在数据分析的世界里,散点图是一种极为重要的可视化工具。

它能够直观地展示两个或多个变量之间的关系,帮助我们快速发现数据中的模式、趋势和异常点。

无论是探索变量之间的相关性,还是寻找数据中的潜在规律,散点图都扮演着不可或缺的角色。

与传统的静态图表不同,Plotly 绘制的散点图可以通过鼠标悬停、缩放和拖动等交互操作,让用户更深入地探索数据细节。

本文旨在探讨使用 Plotly 绘制散点图的高级技巧,包括多变量散点图的绘制、趋势分析方法的应用,以及如何通过这些技巧提升数据分析与可视化的能力。

1. 多变量散点图

1.1. 气泡图

气泡图是一种扩展的散点图,通过引入第三个维度(通常是气泡的大小或颜色)来表示额外的信息,适用于展示三个或更多变量之间的关系。

绘制气泡图时,除了基本的 xy 轴数据外,还需要定义气泡的大小(通常通过 size 参数)和颜色(通过 color 参数)。

这样,气泡图可以在二维图表中同时表达4个属性。

import plotly.express as px
import pandas as pd # 示例数据
data = pd.DataFrame(
{
"x": [1, 2, 3, 4, 5],
"y": [10, 11, 12, 13, 14],
"size": [10, 20, 30, 40, 50],
"color": ["A", "B", "A", "B", "A"],
}
) fig = px.scatter(
data,
x="x",
y="y",
size="size",
color="color",
hover_name="color",
log_x=True,
size_max=60,
)
fig.show()

还可以通过调整颜色映射、气泡大小范围、添加标签等方式来美化气泡图,使其更加直观易懂。

1.2. 散点矩阵图

散点矩阵图是一种同时展示多个变量之间两两关系的图表,它将多个散点图排列成矩阵形式,每个单元格展示一对变量之间的散点图。

这种图表非常适合探索多变量数据之间的相关性,帮助我们快速发现变量之间的线性或非线性关系。

下面的示例中我们使用Plotly中自带的鸢尾花数据集,通过散点矩阵图可同时观察:

  • 花瓣长度与宽度的相关性
  • 不同花种在各维度的分布差异
import plotly.express as px
import plotly.figure_factory as ff df = px.data.iris()
fig = ff.create_scatterplotmatrix(
df,
diag="histogram",
colormap="Viridis", # 对角线显示直方图
width=800,
height=800,
)
fig.update_layout(title="鸢尾花特征矩阵图")
fig.show()

通过这个图,我们可以分析鸢尾花不同属性之间的关联关系。

散点矩阵图的优点在于能够同时展示多个变量之间的关系,信息量大,并且有助于快速发现变量之间的相关性。

不过,当变量数量较多时,图表可能会显得过于复杂,难以解读,这点需要注意。

而且它对于非线性关系的展示效果也有限。

2. 散点图趋势分析法

2.1. 回归分析

回归线散点图中用于展示变量之间趋势关系的重要工具,

回归线通常是指线性回归模型的拟合线,用于量化变量之间的线性关系。

下面通过生成一些测试数据,通过线性模型训练之后,根据训练结果绘制散点数据的回归线。

import pandas as pd
import numpy as np
import plotly.graph_objects as go
from sklearn.linear_model import LinearRegression # 生成示例数据
data = pd.DataFrame({
'x': np.linspace(0, 10, 100),
'y': 2 * np.linspace(0, 10, 100) + 3 + np.random.normal(0, 1, 100)
}) # 线性回归
# 拟合线性模型
model = LinearRegression()
model.fit(data[['x']], data['y'])
data['y_pred_linear'] = model.predict(data[['x']]) # 创建散点图
fig = go.Figure()
fig.add_trace(go.Scatter(x=data['x'], y=data['y'], mode='markers', name='原始数据'))
fig.add_trace(go.Scatter(x=data['x'], y=data['y_pred_linear'], mode='lines', name='线性回归线')) # 显示图形
fig.show()

回归线可以很好的表达数据的变化趋势。

对于非线性的模型,也可以绘制对应的回归线,比如下面示例中采用的多项式回归模型训练,训练结果也可以绘制回归线。

import plotly.graph_objects as go
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures # 多项式回归
# 多项式特征转换
poly = PolynomialFeatures(degree=3)
X_poly = poly.fit_transform(data[['x']])
model_poly = LinearRegression()
model_poly.fit(X_poly, data['y'])
data['y_pred_poly'] = model_poly.predict(X_poly) fig = go.Figure()
fig.add_trace(go.Scatter(x=data['x'], y=data['y'], mode='markers', name='原始数据'))
fig.add_trace(go.Scatter(x=data['x'], y=data['y_pred_linear'], mode='lines', name='线性回归线'))
fig.add_trace(go.Scatter(x=data['x'], y=data['y_pred_poly'], mode='lines', name='多项式回归线')) # 显示图形
fig.show()

两条回归线差不多重合了。(红色是线性回归,青色的是多项式回归

2.2. 平滑处理

平滑算法用于处理散点图中的噪声数据,使数据的趋势更加清晰,通过平滑处理,可以更好地观察数据的长期趋势,而忽略短期的波动。

常见平滑算法有移动平均(通过计算一定窗口内的平均值来平滑数据)和Savitzky-Golay 滤波(一种基于多项式拟合的平滑算法)

Plotly中,可以通过自定义函数或利用现有库(如 SciPy)来实现平滑处理并绘制曲线。

import plotly.express as px
import numpy as np
from scipy.signal import savgol_filter # 示例数据
data = px.data.gapminder().query("country=='Canada'")
y = data["gdpPercap"]
x = np.arange(len(y))
y_smooth = savgol_filter(y, window_length=7, polyorder=2) fig = px.scatter(data, x=x, y=y)
fig.add_scatter(x=x, y=y_smooth, mode="lines", name="平滑曲线")
fig.show()

3. 总结

本文主要介绍如何使用 Plotly 绘制散点图的高级技巧,包括多变量散点图的绘制(如气泡图、散点矩阵图)和趋势分析方法(如拟合曲线、回归线、平滑算法)。

这些技巧不仅提升了数据分析的维度和深度,还通过交互式可视化增强了数据探索的效率和乐趣。

『Plotly实战指南』--散点图绘制进阶篇的更多相关文章

  1. 『Numpy学习指南』Matplotlib绘图

    数据生成: import numpy as np import matplotlib.pyplot as plt func = np.poly1d(np.array([,,,])) func1 = f ...

  2. 『Numpy学习指南』排序&索引&抽取函数介绍

    排序: numpy.lexsort(): numpy.lexsort()是个排字典序函数,因为很有意思,感觉也蛮有用的,所以单独列出来讲一下: 强调一点,本函数只接受一个参数! import nump ...

  3. Chrome开发者工具不完全指南(二、进阶篇)

    上篇向大家介绍完了基础功能篇,这次分享的是Chrome开发工具中最有用的面板Sources.  Sources面板几乎是我最常用到的Chrome功能面板,也是在我看来决解一般问题的主要功能面板.通常只 ...

  4. Apache Beam实战指南 | 大数据管道(pipeline)设计及实践

    Apache Beam实战指南 | 大数据管道(pipeline)设计及实践  mp.weixin.qq.com 策划 & 审校 | Natalie作者 | 张海涛编辑 | LindaAI 前 ...

  5. 【阿里云产品公测】以开发者角度看ACE服务『ACE应用构建指南』

    作者:阿里云用户mr_wid ,z)NKt#   @I6A9do   如果感觉该评测对您有所帮助, 欢迎投票给本文: UO<claV   RsfTUb)<   投票标题:  28.[阿里云 ...

  6. 2017-2018-2 20155303『网络对抗技术』Exp6:信息收集与漏洞扫描

    2017-2018-2 20155303『网络对抗技术』 Exp6:信息收集与漏洞扫描 --------CONTENTS-------- 一.原理与实践说明 1.实践内容 2.基础问题 二.实践过程记 ...

  7. 2018-2019-2 20165316 『网络对抗技术』Exp3:免杀原理与实践

    2018-2019-2 20165316 『网络对抗技术』Exp3:免杀原理与实践 一 免杀原理与实践说明 (一).实验说明 任务一:正确使用msf编码器,msfvenom生成如jar之类的其他文件, ...

  8. 2017-2018-2 20155303『网络对抗技术』Final:Web渗透获取WebShell权限

    2017-2018-2 『网络对抗技术』Final:Web渗透获取WebShell权限 --------CONTENTS-------- 一.Webshell原理 1.什么是WebShell 2.We ...

  9. 2017-2018-2 20155303 『网络对抗技术』Exp3:免杀原理与实践

    2017-2018-2 20155303 『网络对抗技术』Exp3:免杀原理与实践 --------CONTENTS-------- 1. 免杀原理与实践说明 实验说明 基础问题回答 2. 使用msf ...

  10. 2017-2018-2 20155303『网络对抗技术』Exp1:PC平台逆向破解

    2017-2018-2 『网络对抗技术』Exp1:PC平台逆向破解 --------CONTENTS-------- 1. 逆向及Bof基础实践说明 2. 直接修改程序机器指令,改变程序执行流程 3. ...

随机推荐

  1. 微服务实战系列(三)-springcloud、springboot及maven之间关系-copy

    1 . 问题描述 随着springboot.springcloud的不断迭代升级,开发效率不断提升,越来越多的开发团队加入到spring的大军中,今天用通俗的语言,介绍下什么是springboot,s ...

  2. Spring Boot前后端分离直接访问静态页+ajax实现动态网页

    Spring Boot前后端分离直接访问静态页+ajax实现动态网页. 一般java里面Spring Boot项目的静态资源resources/下面有两个文件夹和一个配置文件,分别是static/目录 ...

  3. bkce-6.0.4基础环境部署简述

    1.概述 1.1.相关网站: # 蓝鲸软件包下载:https://bk.tencent.com/download/ # 蓝鲸社区版软件包下载https://bk.tencent.com/downloa ...

  4. mysql 使用 ibd 恢复数据

    分四步: 1. 按照ibd对应的表结构,创建新表: 2. 执行: ALTER TABLE `t_健忘就多写博客` DISCARD TABLESPACE; 或者 停止mysql服务后,删除对应的 xxx ...

  5. 第3章 在C#中创建类型

    第3章 在C#中创建类型 3.1 类 复杂的类可能包含如下内容: 在 class ​关键字之前:类特性(Attribute​)和类修饰符.非嵌套的类修饰符有:public​.internal​.abs ...

  6. 探索AI,拥抱未来,欢迎加入魔乐世界!

    近日,2024开放原子开源生态大会在北京亦庄开幕,大会以"开源赋能产业,生态共筑未来"为主题,来自政府.企业.学术界.研究机构的专家学者汇聚一堂,共同探讨开源在人工智能领域的创新应 ...

  7. NetCore.Encrypt —— 整合加密

    前言 最近呢又接触到加密了,回顾之前用到的加密经历,使用过DES.RSA.MD5.BASE64,前面也更新过两篇加密的文章,MD5加密和DES加密.之前的使用都是在.Net Framework平台,这 ...

  8. VMware与宿主机文件夹共享的方法

    首先,在打开的虚拟机的主界面中点选我的电脑上的虚拟机系统,再点击右侧的编辑虚拟机设置. 然后,在弹出的虚拟机设置中点击"选项"标签栏目 点选在"选项"标签栏目中 ...

  9. [Jaav SE/程序生命周期] 优雅的Java应用程序的启停钩子框架

    序 了解 spring 生态及框架的 java er 都知道,spring 应用的生命周期管理及配套接口较为优雅.可扩展. 但脱离 spring 的 java 应用程序,如何优雅地启停.管理程序的生命 ...

  10. Powershell 调用cmd 运行exe、bat、jar文件

    1. 配置路径 $nginxPath = "C:\path\to\nginx" $redisPath = "C:\path\to\redis" $ruoyiAd ...