最小生成树的kruskal、prim算法】的更多相关文章

最小生成树-----在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树. 应用场景 1.假设以下情景,有一块木板,板上钉上了一些钉子,这些钉子可以由一些细绳连接起来.假设每个钉子可以通过一根或者多根细绳连接起来,那么一定存在这样的情况, 即用最少的细绳把所有钉子连接起来. 2.更为实际的情景是这样的情况,在某地分布着N个村庄,现在需要在N个村庄之间修路,每个村庄之前的距离不同,问怎么修最短的路,将各个村庄连接起来. 以上这些问题都可以归纳为最小生成树问题,用正式的表述方法描述为:…
数据结构与算法--最小生成树之Prim算法 加权图是一种为每条边关联一个权值或称为成本的图模型.所谓生成树,是某图的一棵含有全部n个顶点的无环连通子图,它有n - 1条边.最小生成树(MST)是加权图的一棵权值和(所有边的权值相加之和)最小的生成树. 要注意以下几点: 最小生成树首先是一个生成树,所以我们研究的是无环连通分量: 边的权值可能是0也可能是负数 边的权值不一定表示距离,还可以是费用等 加权无向图的实现 之前图的实现都没有考虑权值,而权值存在于边上,所以最好是将"边"这个概念…
题目: 时间限制:10000ms 单点时限:1000ms 内存限制:256MB   描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问题也接踵而来——小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A.B.C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过这两条道路连通的). 输入 每个…
普里姆算法介绍 普里姆(Prim)算法,是用来求加权连通图的最小生成树算法 基本思想:对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边. 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边. 代码实现 1. 思想逻辑 (1)以无向图的…
Borg Maze POJ-3026 一开始看到这题是没有思路的,看了题解才知道和最小生成树有关系. 题目的意思是每次走到一个A或者S就可以分为多个部分继续进行搜索.这里就可以看出是从该点分出去的不同路径. 所以首先需要使用bfs求出每对顶点的最短路来,但是在这个过程中,我出了个bug,导致调试半天,就是那里bfs上下左右走的时候的x,y都用的原来的. 最小生成树就是使用prim算法,该算法和dijikstra算法特别像,唯一有区别的就是mincost函数的定义. #include<iostre…
prim算法 边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以把边上的权值解释为线路的造价.则最小生成树表示使其造价最小的生成树. 构造网的最小生成树必须解决下面两个问题: 1.尽可能选取权值小的边,但不能构成回路: 2.选取n-1条恰当的边以连通n个顶点: MST性质:假设G=(V,E)是一个连通网,U是顶点V的一个非空子集.若(u,v)是一条…
描述: 一个连通图的生成树是指一个极小连通子图,它含有图中的全部顶点,但只有足以构成一棵树的 n-1 条边.我们把构造连通网的最小代价生成树成为最小生成树.而Prim算法就是构造最小生成树的一种算法. 定义: 假设N = (P,{E})是连通网,TE是N上最小生成树中边的集合.算法从U = {U0}(U0属于V).开始重复执行下述操作:在所有u属于U,v属于V-U的边(u,v)属于E中找到一条代价最小的边(u0,v0)并入集合TE,同事v0并入U,知道U = V为止.此时TE中必有n-1条边,则…
图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph)表示的是顶点之间的邻接关系. (1) 无向图(undirect graph)      E中的每条边不带方向,称为无向图.(2) 有向图(direct graph)      E中的每条边具有方向,称为有向图.(3) 混合图       E中的一些边不带方向, 另一些边带有方向.(4) 图的阶      指…
Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来. 初始时,每个顶点各自属于自己的子集合,共n个子集合. 每一步操作,都会将两个子集合融合成一个,进而减少一个子集合. 结束时,所有的顶点都在同一个子集合里,这个子集合就是最小生成树. 例子: 伪代码: Prim算法: G=(V,E),S是V的真子集,如果u在S中,v在V-S中,且(u,v)是图的一…
最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小支撑树(minimum spanning tree)算法.给定一个无向图G,并且它的每条边均权值,则MST是一个包括G的所有顶点及边的子集的图,这个子集保证图是连通的,并且子集中所有边的权值之和为所有子集中最小的. 本节中介绍三种算法求解图的最小生成树:Prim算法.Kruskal算法和Boruvk…