转自: http://jm.taobao.org/ 一种可以避免数据迁移的分库分表scale-out扩容方式 目前绝大多数应用采取的两种分库分表规则 mod方式 dayofweek系列日期方式(所有星期1的数据在一个库/表,或所有?月份的数据在一个库表) 这两种方式有个本质的特点,就是离散性加周期性. 例如以一个表的主键对3取余数的方式分库或分表: 那么随着数据量的增大,每个表或库的数据量都是各自增长.当一个表或库的数据量增长到了一个极限,要加库或加表的时候,介于这种分库分表算法的离散性,必需要…
原文地址:http://jm-blog.aliapp.com/?p=590 目前绝大多数应用采取的两种分库分表规则 mod方式 dayofweek系列日期方式(所有星期1的数据在一个库/表,或所有?月份的数据在一个库表) 这两种方式有个本质的特点,就是离散性加周期性. 例如以一个表的主键对3取余数的方式分库或分表: 那么随着数据量的增大,每个表或库的数据量都是各自增长.当一个表或库的数据量增长到了一个极限,要加库或加表的时候, 介于这种分库分表算法的离散性,必需要做数据迁移才能完成.例如从3个扩…
原文地址:http://jm-blog.aliapp.com/?p=590 目前绝大多数应用采取的两种分库分表规则 mod方式 dayofweek系列日期方式(所有星期1的数据在一个库/表,或所有?月份的数据在一个库表) 这两种方式有个本质的特点,就是离散性加周期性. 例如以一个表的主键对3取余数的方式分库或分表: 那么随着数据量的增大,每个表或库的数据量都是各自增长.当一个表或库的数据量增长到了一个极限,要加库或加表的时候, 介于这种分库分表算法的离散性,必需要做数据迁移才能完成.例如从3个扩…
数据存储演进思路一:单库单表 单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到. 数据存储演进思路二:单库多表 随着用户数量的增加,user表的数据量会越来越大,当数据量达到一定程度的时候对user表的查询会渐渐的变慢,从而影响整个DB的性能.如果使用mysql, 还有一个更严重的问题是,当需要添加一列的时候,mysql会锁表,期间所有的读写操作只能等待. 可以通过某种方式将user进行水平的切分,产生两个表结构完全一样的…
数据存储演进思路一:单库单表 单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到. 数据存储演进思路二:单库多表 随着用户数量的增加,user表的数据量会越来越大,当数据量达到一定程度的时候对user表的查询会渐渐的变慢,从而影响整个DB的性能.如果使用mysql, 还有一个更严重的问题是,当需要添加一列的时候,mysql会锁表,期间所有的读写操作只能等待. 可以通过某种方式将user进行水平的切分,产生两个表结构完全一样的…
  数据存储演进思路一:单库单表 单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到. 数据存储演进思路二:单库多表 随着用户数量的增加,user表的数据量会越来越大,当数据量达到一定程度的时候对user表的查询会渐渐的变慢,从而影响整个DB的性能.如果使用mysql, 还有一个更严重的问题是,当需要添加一列的时候,mysql会锁表,期间所有的读写操作只能等待. 可以通过某种方式将user进行水平的切分,产生两个表结构完全一…
今天我们介绍一下 Sharding-JDBC框架和快速的搭建一个分库分表案例,为讲解后续功能点准备好环境. 一.Sharding-JDBC 简介 Sharding-JDBC 最早是当当网内部使用的一款分库分表框架,到2017年的时候才开始对外开源,这几年在大量社区贡献者的不断迭代下,功能也逐渐完善,现已更名为 ShardingSphere,2020年4⽉16⽇正式成为 Apache 软件基⾦会的顶级项⽬. 随着版本的不断更迭 ShardingSphere 的核心功能也变得多元化起来.从最开始 S…
作为一种数据存储层面上的水平伸缩解决方案,数据库Sharding技术由来已久,很多海量数据系统在其发展演进的历程中都曾经历过分库分表的Sharding改造阶段.简单地说,Sharding就是将原来单一数据库按照一定的规则进行切分,把数据分散到多台物理机(我们称之为Shard)上存储,从而突破单机限制,使系统能以Scale-Out的方式应对不断上涨的海量数据,但是这种切分对上层应用来说是透明的,多个物理上分布的数据库在逻辑上依然是一个库.实现Sharding需要解决一系列关键的技术问题,这些问题主…
作为一种数据存储层面上的水平伸缩解决方案,数据库Sharding技术由来已久,很多海量数据系统在其发展演进的历程中都曾经历过分库分表的Sharding改造阶段.简单地说,Sharding就是将原来单一数据库按照一定的规则进行切分,把数据分散到多台物理机(我们称之为Shard)上存储,从而突破单机限制,使系统能以Scale-Out的方式应对不断上涨的海量数据,但是这种切分对上层应用来说是透明的,多个物理上分布的数据库在逻辑上依然是一个库.实现Sharding需要解决一系列关键的技术问题,这些问题主…
作者:老顾聊技术   搜云库技术团队  来源:https://www.toutiao.com/i6677459303055491597 一.前言 中大型项目中,一旦遇到数据量比较大,小伙伴应该都知道就应该对数据进行拆分了.有垂直和水平两种. 垂直拆分比较简单,也就是本来一个数据库,数据量大之后,从业务角度进行拆分多个库.如下图,独立的拆分出订单库和用户库. 水平拆分的概念,是同一个业务数据量大之后,进行水平拆分. 上图中订单数据达到了4000万,我们也知道mysql单表存储量推荐是百万级,如果不…