题意:从编号为 1~N 的音阶中可选任意个数组成一个音乐片段,再集合组成音乐篇章.要求一个音乐篇章中的片段不可重复,都不为空,且出现的音符的次数都是偶数个.问组成 M 个片段的音乐篇章有多少种.答案取模1000000007(质数). 解法:先将题目模型化:N 个数组成 M 种组合,且要求组合之间互不相等,把各组合用二进制表示对 N 个数的取舍状态之后的异或和为0.   虽然求得是组合,但我们转化为排列来做计算时更方便.假设 f[i] 表示从 n 个数中选 i 种排列的方案数.那么就是"总的排列数…
题目链接 \(Description\) 有\(n\)个数,用其中的某些数构成集合,求构造出\(m\)个互不相同且非空的集合(\(m\)个集合无序),并满足每个数总共出现的次数为偶数的方案数. \(Solution\) 为简化问题,将无序转为有序,只需在最后除以\(m!\)即可. 设\(f[i]\)表示构造前\(i\)个集合并满足条件的方案数. 每个数出现次数为偶数,所以如果前\(i-1\)个集合确定,第\(i\)个集合也可以确定.这样对于\(i\)有\(A_{2^n-1}^{i-1}\)种方案…
Description Solution 比较难想.... 我们先考虑去掉无序的这个条件,改为有序,最后除 \(m!\) 即可 设 \(f[i]\) 表示前\(i\)个合法集合的方案数 明确一点: 如果前\(i-1\)个集合已经确定,并且前\(i\)个是合法的,那么第\(i\)就是确定的,所以是一一对应的关系,如果不考虑重复和空集的情况,那么总方案数就是 \(A_{2^{n}-1}^{i-1}\) 考虑去掉不合法的: 1.当前集合为空集,方案数为 \(f[i-1]\) 2.有两个集合相同,那么去…
Description 首先去除顺序不同算一种的麻烦,就是最后答案除以总片段数\(2^m-1\) 设\(f_i\)表示安排\(i\)个片段的合法种类 那么对于任何一个包含\(i-1\)个片段的序列(除了发\(f_{i-1}\)的那几个合法序列)都能再找到唯一一个片段使得整个序列变为合法序列(那种和旋是基数个就选上).但是还有一种特例就是可能这个新选的片段已经在序列里了,这种情况下把这两个相同的片段去掉肯定还是合法序列啊,就是\(f_{i-2}\) 所以总柿子就是\[f_i= A_{2^m-1}^…
2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][Discuss] Description 可以把集合视作有序的,当做排列做,最后再 /m!设f[i]表示选出i个集合的合法方案 选出了(i-1)个集合后,最后一个集合是唯一确定的 总数就是A(2^n - 1,i-1)但是最后确定的集合可能使方案不合法,有两种情况1.最后确定的集合为空,这种情况的方案…
题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m\)个不同集合且每个元素出现偶数的组合方案 无序(打乱顺序仍记为一种)通常我们对于有序的做法更简单,怎么转换呢 C组合数的公式是怎么得来的?别说你是背来的\(emmm\)(那也没有做这题的必要了) 有序\(m!\)就得到了无序的 我们考虑\(dp\),数组\(dp_i\)表示选i个不同集合的排列方案…
[BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见"试题描述" 数据规模及约定 见"试题描述" 题解 先考虑 m 个 01 串排顺序的情况.可以发现如果定下前 m - 1 个 01 串,那么第 m 个串就可以由前面所有 01 串按位异或得出,所以方案数为 A(2n - 1, m - 1)(即除全 0 串外的所有情况选择…
题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考虑递推,设$f[i]$为选$i$个集合满足以上条件的方案数. 考虑容斥: 当确定了前$i-1$个集合后,要满足第三个条件的话,第$i$个集合是唯一确定的,所以总方案数为$A_{2^n-1}^{i-1}$. 去掉第$i$个集合是空集的情况,如果第$i$个集合是空集,那么前$i-1$个集合一定合法,即方…
[BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确定的了.因为内层集合的n个元素可以随便出现,那么总数就是A(2^n-1,m-1).但是可能存在不合法的情况. 1.在前m-1个集合中,n个数出现的次数已经都是偶数了,那么第m个集合为空,不合法,此时方案数为f[m-1].2.第m个集合与之前某个集合相同,那么我们不考虑这两个集合,剩下的方案数为f[i…
HYSBZ(BZOJ) 4300 绝世好题(位运算,递推) Description 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<=len). Input 输入文件共2行. 第一行包括一个整数n. 第二行包括n个整数,第i个整数表示ai. Output 输出文件共一行. 包括一个整数,表示子序列bi的最长长度. Sample Input 3 1 2 3 Sample Output 2 Http HYSBZ:http://www.lydsy…