random random.random random.random()用于生成一个0到1的随机浮点数: 0 <= n < 1.0 random.uniform random.uniform的函数原型为:random.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限.如果a > b,则生成的随机数n: a <= n <= b.如果 a <b, 则 b <= n <= a. random.randint ran
import random k = random.sample(xrange(0x41, 0x5b), 26) print k import random k = random.sample(xrange(0x41, 0x5b), 26) print k k = [chr(x) for x in k] print k v = random.sample(xrange(1000000), 26) print v d = dict(zip(k, v)) print d 输出结果 </pre><
If is a discrete random variable taking on values , then we can write . Implementation of this formula to generate discrete random variables is actually quite straightforward and can be summarized as follows. To generate , Generate if , set . we defi
最近一个月的时间,基本上都在加班加点的写业务,在写代码的时候,也遇到了一个有趣的问题,值得记录一下. 简单来说,需求是从一个字典(python dict)中随机选出K个满足条件的key.代码如下(python2.7): def choose_items(item_dict, K, filter): '''item_dict = {id:info} ''' candidate_ids = [id for id in item_dict if filter(item_dict[id])] if le
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的文章,个人非常喜欢,也列出来了. 33. SIFT关于SIFT,实在不需要介绍太多,一万多次的引用已经说明问题了.SURF和PCA-SIFT也是属于这个系列.后面列出了几篇跟SIFT有关的问题.[1999 ICCV] Object recognition from local scale-invar