在分析python代码性能瓶颈,但又不想修改源代码的时候,ipython shell以及第三方库提供了很多扩展工具,可以不用在代码里面加上统计性能的装饰器,也能很方便直观的分析代码性能。下面以我自己实现的一个快排代码为例,带你使用集中不同的性能分析工具。

def quick_sort(data, low, high):
if low >= high:
return left, right = low, high
key = data[left]
while left < right:
while left < right and data[right] >= key:
right -= 1
data[left] = data[right]
while left < right and data[left] <= key:
left += 1
data[right] = data[left] data[right] = key
quick_sort(data, low, left - 1)
quick_sort(data, left + 1, high) import random
data = [random.randint(0, 1000) for _ in xrange(500)]

time

在ipython shell中,通过输入命令%time quick_sort(data, 0, 499)就可以查看调用耗时。

其中time命令的输出wall time是实际耗时的意思,通过简单的耗时查看就可以得出此快排算法针对不均匀分布的数组要慢很多。

timeit

在ipython shell中,通过输入命令%timeit -n 100 -r 5 quick_sort(data, 0, 499),就可以很方便的实现多次调用找到最短耗时。

此命令的含义就是重复100遍,每遍调用5此quick_sort,timeit会返回每遍的最短平均耗时。

line_profiler

line_profiler可以分析函数内每一行的执行时间,可以很方便的找出性能瓶颈。line_profiler不是ipython自带工具,需要通过pip install line_profiler安装。在ipython交互界面,通过下面方式使用:

首先需要通过%load_ext导入line_profiler, -f参数是需要分析的函数。lprun命令的参数可以通过%lprun?查看。

profile

profile和cProfile是python内置的性能分析工具。可以通过很简单的命令分析每个函数的执行时间。

图中的命令按照累计执行时间进行降序排列,可以较为方便的找出最为耗时的函数。如果想更为直观的展示,还可以安装可视化组件gprof2dot和graphviz,安装方法如下:

pip install gprof2dot
brew install graphviz (for mac)
yum -y install graphviz (for centos)

安装好之后再ipython shell连执行cProfile.run('quick_sort(data, 0, 499)', filename='result.out', sort='cumulative')命令将耗时分析结果导出只result.out文件中,然后在bash shell里执行命令gprof2dot -f pstats result.out | dot -Tpng -o result.png即可生成非常直观的调用耗时图。

当然用到的这个例子不是很好,没有把图像的优势展现出来,在调用非常复杂的时候,自上而下,函数的调用关系和耗时情况一目了然。更多的使用可以查阅python官方文档。

yappi

和profile、cProfile类似,但是yappi对于多线程有着更好的支持,profile不会区分多线程,所以结果看起来会很乱。yappi文档连接:https://bitbucket.org/sumerc/yappi/wiki/ApiYappi

使用方法如下:

import yappi
yappi.clear_stats()
yappi.start()
quick_sort(data, 0, 499)
yappi.stop()
stats = yappi.convert2pstats(yappi.get_func_stats())
stats.sort_stats("cumulative")
stats.print_stats()

在python shell连执行这些就可以把要分析的函数按照累计执行时间排序后打印出来,当然yappi同样可以用图像表示,在python shell里执行stats.dump_stats('result.out')把耗时数据导出到result.out中,然后在bash shell里面执行gprof2dot -f pstats result.out | dot -Tpng -o result.png,生成图像如下:

当然yappi.start中还可以添加一些参数是否分析多线程以及builtin函数。

如何进行python性能分析?的更多相关文章

  1. Python性能分析

    Python性能分析 https://www.cnblogs.com/lrysjtu/p/5651816.html https://www.cnblogs.com/cbscan/articles/33 ...

  2. python性能分析(一)——使用timeit给你的程序打个表吧

    前言 我们可以通过查看程序核心算法的代码,得知核心算法的渐进上界或者下界,从而大概估计出程序在运行时的效率,但是这并不够直观,也不一定十分靠谱(在整体程序中仍有一些不可忽略的运行细节在估计时被忽略了) ...

  3. 如何进行 Python性能分析,你才能如鱼得水?

    [编者按]本文作者为 Bryan Helmig,主要介绍 Python 应用性能分析的三种进阶方案.文章系国内 ITOM 管理平台 OneAPM 编译呈现. 我们应该忽略一些微小的效率提升,几乎在 9 ...

  4. Python性能分析工具Profile

    Python性能分析工具Profile 代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 ...

  5. Python性能分析与优化PDF高清完整版免费下载|百度云盘

    百度云盘|Python性能分析与优化PDF高清完整版免费下载 提取码:ubjt 内容简介 全面掌握Python代码性能分析和优化方法,消除性能瓶颈,迅速改善程序性能! 对于Python程序员来说,仅仅 ...

  6. Python性能分析指南

    http://www.admin10000.com/document/2861.html 尽管并非每个你写的Python程序都需要严格的性能分析,但了解一下Python的生态系统中很多优秀的在你需要做 ...

  7. Python丨Python 性能分析大全

    虽然运行速度慢是 Python 与生俱来的特点,大多数时候我们用 Python 就意味着放弃对性能的追求.但是,就算是用纯 Python 完成同一个任务,老手写出来的代码可能会比菜鸟写的代码块几倍,甚 ...

  8. Python性能分析指南(未完成)

    英文原文:http://www.huyng.com/posts/python-performance-analysis/ 译文:http://www.oschina.net/translate/pyt ...

  9. Python—— 性能分析入门指南

    虽然并非你编写的每个 Python 程序都要求一个严格的性能分析,但是让人放心的是,当问题发生的时候,Python 生态圈有各种各样的工具可以处理这类问题. 分析程序的性能可以归结为回答四个基本问题: ...

随机推荐

  1. In-Memory:在内存中创建临时表和表变量

    在Disk-Base数据库中,由于临时表和表变量的数据存储在tempdb中,如果系统频繁地创建和更新临时表和表变量,大量的IO操作集中在tempdb中,tempdb很可能成为系统性能的瓶颈.在SQL ...

  2. HTTPS简介

    一.简单总结 1.HTTPS概念总结 HTTPS 就是对HTTP进行了TLS或SSL加密. 应用层的HTTP协议通过传输层的TCP协议来传输,HTTPS 在 HTTP和 TCP中间加了一层TLS/SS ...

  3. 简记用ArcGIS处理某项目需求中数据的步骤

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1. 背景 项目需求涉及如下几个步骤: a.矢量化 b.获取范围内要素 ...

  4. await and async

    Most people have already heard about the new “async” and “await” functionality coming in Visual Stud ...

  5. [systemtap手记]debian体系安装过程

    Debian体系,本人测试用机 Ubuntu 11.10 uname -r 查看原本的内核版本为 3.0.0-12-generic 第一步: 安装systemtap包 $ sudo apt-get i ...

  6. webix前端架构的项目应用

    webix框架兼容javascript.HTML.CSS,应用比较灵活,应用框架时,配合后台webAPI,整个web项目里面,App文件夹保存前台的多语言文件,图片文件,webix原代码js.css, ...

  7. iOS之开发中常用的颜色及其对应的RGB值

      R G B 值   R G B 值   R G B 值 黑色 0 0 0 #000000 黄色 255 255 0 #FFFF00 浅灰蓝色 176 224 230 #B0E0E6 象牙黑 41 ...

  8. DirectX Graphics Infrastructure(DXGI):最佳范例 学习笔记

    今天要学习的这篇文章写的算是比较早的了,大概在DX11时代就写好了,当时龙书11版看得很潦草,并没有注意这篇文章,现在看12,觉得是跳不过去的一篇文章,地址如下: https://msdn.micro ...

  9. hexo+github搭建个人博客

    最近用hexo+github搭建了自己的个人博客-https://liuyfl.github.io,其中碰到了一些问题,记录下来,以便查阅. hexo+github在win7环境下搭建个人博客:hex ...

  10. BZOJ 3894: 文理分科 [最小割]

    3894: 文理分科 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 674  Solved: 392[Submit][Status][Discuss] ...