[BZOJ4920][Lydsy六月月赛]薄饼切割
[BZOJ4920][Lydsy六月月赛]薄饼切割
试题描述
有一天,tangjz 送给了 quailty 一张薄饼,tangjz 将它放在了水平桌面上,从上面看下去,薄饼形成了一个 \(H \times W\) 的长方形。
tangjz 交给了 quailty 一根木棍,要求 quailty 将木棍轻轻放到桌面上。然后 tangjz 会以薄饼中心作为原点,将木棍绕着原点旋转一圈,将木棍扫过的部分切下来送给 quailty。
quailty 已经放好了木棍,请写一个程序帮助他们计算 quailty 得到了多少面积的薄饼。
输入
第一行包含一个正整数 \(T(1 \le T \le 1000)\),表示测试数据的组数。
每组数据包含一行 \(6\) 个整数 \(H,W,x_1,y_1,x_2,y_2(1 \le H,W \le 10000,|x_1|,|y_1|,|x_2|,|y_2| \le 10000)\),其中 \(H\) 和 \(W\) 表示薄饼的长和宽,\((x_1,y_1)\) 和 \((x_2,y_2)\) 分别表示木棍两端点的坐标。
输入数据保证木棍两端点不会重合。
输出
对于每组数据,输出一行一个实数,即 quailty 得到的面积,与标准答案的绝对或相对误差不超过 \(10^{-8}\) 时会被认为是正确的。
输入示例
2
3 2 -4 0 -4 -3
1 5 -4 -3 4 2
输出示例
0.0000000000000
4.4352192982310
数据规模及约定
见“输入”
题解
不难发现扫过的面就是一个大圆和长方形的交减去小圆和长方形的交。
下面令 \(P_1(x_1, y_1), P_2(x_2, y_2)\),\(O\) 为原点。
首先需要确定大圆小圆的半径。大圆的半径就是线段 \(P_1P_2\) 到原点的最大距离,即 \(\max \{ |OP_1|, |OP_2| \}\)。小圆的半径则是线段 \(P_1P_2\) 到原点的最小距离,如果过原点做 \(P_1P_2\) 所在直线的垂线与 \(P_1P_2\) 有交的话(这个可以用向量的点积判断),距离就是这个垂线段的长度,可以直接用面积法计算出来;如果没有交点那就是 \(\min \{ |OP_1|, |OP_2| \}\)。
接下来考虑如何计算一个半径为 \(r\),圆心为 \(O\) 的圆与四个顶点坐标分别为 \(\begin{Bmatrix} \left( -\frac{W}{2}, \frac{H}{2} \right), \left( \frac{W}{2}, \frac{H}{2} \right), \left( \frac{W}{2}, -\frac{H}{2} \right), \left( -\frac{W}{2}, -\frac{H}{2} \right) \end{Bmatrix}\) 的矩形的交集的面积。
这个东西还是分类讨论一下:
- 如果圆将整个矩形包含(即 \(2r \ge \sqrt{W^2 + H^2}\)),则面积为 \(W \cdot H\);
- 否则就是一个圆的面积减去几个弓形的面积(注意判断一下是否与上下、左右边界相交),这个弓形的面积就是扇形的面积减去一个三角形的面积,可以利用
acos(x)
(即 \(\arccos(x)\))函数得到扇形的角度从而得到扇形面积,用叉积计算三角形的面积。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <cmath>
using namespace std;
#define rep(i, s, t) for(int i = (s), mi = (t); i <= mi; i++)
#define dwn(i, s, t) for(int i = (s), mi = (t); i >= mi; i--)
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
}
const double pi = acos(-1.0);
struct Vec {
double x, y;
Vec() {}
Vec(double _, double __): x(_), y(__) {}
Vec operator - (const Vec& t) const { return Vec(x - t.x, y - t.y); }
double operator * (const Vec& t) const { return x * t.x + y * t.y; }
double operator ^ (const Vec& t) const { return x * t.y - y * t.x; }
double len() { return sqrt(x * x + y * y); }
};
double OutArea(double h, double a) {
double c = sqrt(a * a - h * h), S = pi * a * a * acos(h / a) / pi;
S -= abs(Vec(c, h) ^ Vec(-c, h)) / 2.0;
return S;
}
double Area(double H, double W, double r) {
if(H > W) swap(H, W);
if(r >= sqrt(H * H + W * W) / 2.0) return H * W;
double S = pi * r * r;
if(r > H / 2.0) S -= 2.0 * OutArea(H / 2.0, r);
if(r > W / 2.0) S -= 2.0 * OutArea(W / 2.0, r);
return S;
}
double calcDis(Vec p1, Vec p2) {
if(min((p1 - p2) * (Vec(0, 0) - p2), (p2 - p1) * (Vec(0, 0) - p1)) < 0) return min(p1.len(), p2.len());
return abs(p1 ^ p2) / (p1 - p2).len();
}
void work() {
int H = read(), W = read(), x1 = read(), y1 = read(), x2 = read(), y2 = read();
double l = calcDis(Vec(x1, y1), Vec(x2, y2)), r = max(Vec(x1, y1).len(), Vec(x2, y2).len());
printf("%.13lf\n", Area(H, W, r) - Area(H, W, l));
return ;
}
int main() {
int T = read();
while(T--) work();
return 0;
}
[BZOJ4920][Lydsy六月月赛]薄饼切割的更多相关文章
- BZOJ4920: [Lydsy1706月赛]薄饼切割
BZOJ4920: [Lydsy1706月赛]薄饼切割 Description 有一天,tangjz送给了quailty一张薄饼,tangjz将它放在了水平桌面上,从上面看下去,薄饼形成了一个H*W的 ...
- 【BZOJ4919】[Lydsy六月月赛]大根堆 线段树合并
[BZOJ4919][Lydsy六月月赛]大根堆 Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切 ...
- 【BZOJ4922】[Lydsy六月月赛]Karp-de-Chant Number 贪心+动态规划
[BZOJ4922][Lydsy六月月赛]Karp-de-Chant Number Description 卡常数被称为计算机算法竞赛之中最神奇的一类数字,主要特点集中于令人捉摸不透,有时候会让水平很 ...
- bzoj 4921: [Lydsy六月月赛]互质序列
4921: [Lydsy六月月赛]互质序列 Time Limit: 1 Sec Memory Limit: 256 MBSubmit: 188 Solved: 110[Submit][Status ...
- bzoj 4919: [Lydsy六月月赛]大根堆
Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...
- 【BZOJ4919】[Lydsy六月月赛]大根堆
题解: 我觉得数据结构写成结构体还是有必要的 因为不然一道题里出现了两个相同的数据结构由于名字很像很容易出错 另外初始化用segmenttree(){ } 首先裸的dp很好想 f[i][j]表示在i点 ...
- 【bzoj4921】[Lydsy六月月赛]互质序列 暴力
题目描述 给出一个序列,要求删除一段非空区间,使得剩下的数的个数大于等于2.求所有删除方式剩下的数的最大公约数的和. 输入 第一行包含一个正整数n(3<=n<=100000),表示序列的长 ...
- 【bzoj4922】[Lydsy六月月赛]Karp-de-Chant Number 贪心+背包dp
题目描述 给出 $n$ 个括号序列,从中选出任意个并将它们按照任意顺序连接起来,求以这种方式得到匹配括号序列的最大长度. 输入 第一行包含一个正整数n(1<=n<=300),表示括号序列的 ...
- 【BZOJ5072】[Lydsy十月月赛]小A的树 树形DP
[BZOJ5072][Lydsy十月月赛]小A的树 题解:考虑我们从一个联通块中替换掉一个点,导致黑点数量的变化最多为1.所以我们考虑维护对于所有的x,y的最大值和最小值是多少.如果询问的y在最大值和 ...
随机推荐
- Apache和Nignx基于三种方式搭建web站点并设置用户访问控制达到优化整个站点性能
个人用户主页: 1:Vim /etc/http/con.d/userdir: UserDir disabled //个人用户主页开启 UserDir public_html //指定 ...
- fabric Report API
1.Token生成 接口 : post https://fabric.io/oauth/token 请求头:Headers Content-Type : application/json 正文: bo ...
- DESCRIBEFIELD
実行時データ型識別.略語は RTTI です.プログラム実行時にデータ型を識別して処理を行う仕組みです.. DESCRIBE FIELD命令を使用 DESCRIBE FIELD命令を使用して.変数のデー ...
- Create Fiori List App Report with ABAP CDS view – PART 2
In the Part 1 blog, we have discussed below topics CDS annotations for Fiori List Report. How to cre ...
- Spring + MySQL + Mybatis + Redis【二级缓存】执行流程分析
一级缓存基于 PerpetualCache 的 HashMap 本地缓存,其存储作用域为 Session,当 Session flush 或 close 之后,该Session中的所有 Cache 就 ...
- Date()日期函数浏览器兼容问题踩坑
原文:Date()日期函数浏览器兼容问题踩坑 之前用layui做的一项目中,table中用到了日期格式化的问题.直接没多想,撸代码就完了呗,结果最近一段时间客户反馈说显示日期跟录入日期不一样(显示日期 ...
- mysql8.0.14 安装
1.下载 地址:https://dev.mysql.com/downloads/mysql/ 找到zip压缩文件. 2.配置环境变量 把解压后的路径配置到环境变量中 3.安装 在解压后的文件夹中新建m ...
- 数据库sql命令
本文为转载,原文地址:http://www.cnblogs.com/cangqiongbingchen/p/4530333.html 1.说明:创建数据库CREATE DATABASE databas ...
- Ajax请求被缓存的几种处理方式
Ajax请求被缓存的几种处理方式 我们都知道IE会针对ajax请求的地址缓存请求结果,直到缓存过期之前,针对相同地址发出的请求,只有第一次会请求会真正发送到服务端.在某种情况下,这种缓存机制确实能提高 ...
- Visual Studio 2017离线安装包
点击下载