51nod1254 最大子段和 V2 DP
题解:
表示今天做题一点都不顺。。。。
这题也是看了题解思路然后自己想转移的。
看的题解其实不是这道题,但是是这道题的加强版,因为那道题允许交换k对数。
因为我们选出的是连续的一段,所以假设我们选了某一段,那么原序列将会被分为3段,我们设这3段分别是第0段,第1段和第2段,我们假设我们选出的区间是第1段。
那么我们的目的就是要从第0段或第2段中选出一个数,从第1段中剔除一个数,使得1段中剩余数+选出数之和最大。
所以我们设f[i][j][k][l]表示DP到i位,已经选出了j个数,剔除了k个数, 当前在第l段的最大值。
那么每次转移的时候就枚举一下当前的状态,如果当前在第0段or第2段,那么就考虑选出一个数or不选一个数。
如果当前在第1段,那么就考虑剔除这个数or保留这个数。
最后的答案就枚举一下最后一个数是属于哪一段,是否有交换(如果交换就是选出1个数,剔除1个数)。
这里虽然强制交换,但和可以选择交换不交换是等效的。
因为当n <= 2的时候,交换显然无意义。当n > 2的时候,属于1段的数的个数和不属于1段的数的个数中肯定有一个>= 2,那么交换一个段内部的数肯定是不会产生影响的,所以和不交换一样。
因此选择不交换一定是合法的。
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 50100
#define LL long long int n;
int s[AC];
LL f[AC][][][];//DP到i位, 选出j个,剔除k个,当前在第l段的最大值。 inline int read()
{
int x = ;char c = getchar();bool z = false;
while(c > '' || c < '')
{
if(c == '-') z = true;
c = getchar();
}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
if(!z) return x;
else return -x;
} void pre()
{
n = read();
for(R i = ; i <= n; i ++) s[i] = read();
} LL Max(LL a, LL b, LL c)
{
if(a > b && a > c) return a;
else if(b > c) return b;
else return c;
} LL Max_(LL a, LL b, LL c, LL d)
{
if(a > b && a > c && a > d) return a;
else if(b > c && b > d) return b;
else if(c > d) return c;
else return d;
} void work()
{
for(R i = ; i <= n; i ++)
{
f[i][][][] = max(f[i - ][][][], f[i - ][][][] + s[i]);
f[i][][][] = max(f[i - ][][][], f[i - ][][][]) + s[i];
f[i][][][] = Max(f[i - ][][][], f[i - ][][][] + s[i], f[i - ][][][]);
f[i][][][] = max(f[i - ][][][], f[i - ][][][]) + s[i];
f[i][][][] = Max(f[i - ][][][] + s[i], f[i - ][][][], f[i - ][][][]);
f[i][][][] = max(f[i - ][][][], f[i - ][][][]);
f[i][][][] = Max_(f[i - ][][][], f[i - ][][][], f[i - ][][][] + s[i], f[i - ][][][] + s[i]);
f[i][][][] = max(f[i - ][][][], f[i - ][][][]);
}
printf("%lld\n", Max_(f[n][][][], f[n][][][], f[n][][][], f[n][][][]));
} int main()
{
freopen("in.in", "r", stdin);
pre();
work();
fclose(stdin);
return ;
}
51nod1254 最大子段和 V2 DP的更多相关文章
- [51nod1254]最大子段和 V2
N个整数组成的序列a[1],a[2],a[3],-,a[n],你可以对数组中的一对元素进行交换,并且交换后求a[1]至a[n]的最大子段和,所能得到的结果是所有交换中最大的.当所给的整数均为负数时和为 ...
- 51Nod1053 最大M子段和V2 二分+DP
传送门 直接DP的话最多也只能做到\(O(nm)\),对于\(5\times 10^4\)的数据范围实在无能为力 夹克老爷提供的做法是贪心,思想大概是在调整的同时,合理构造每个选择对应的新状态,使得新 ...
- 51nod 1053 最大M子段和 V2
N个整数组成的序列a[1],a[2],a[3],…,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M >= N个数中正数的个数,那么输出所有正数的和. 例如:-2 ...
- 51nod 1049 1049 最大子段和 (dp)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1049 令 dp[i]表示为以a[i]结尾的最大子段和,则 dp[i]= ...
- 『最大M子段和 线性DP』
最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...
- 最大子段和的DP算法设计及其效率测试
表情包形象取自番剧<猫咪日常> 那我也整一个 曾几何时,笔者是个对算法这个概念漠不关心的人,由衷地感觉它就是一种和奥数一样华而不实的存在,即便不使用任何算法的思想我一样能写出能跑的程序 直 ...
- 51nod 1022 石子归并 V2 —— DP四边形不等式优化
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 1022 石子归并 V2 基准时间限制:1 秒 空间限 ...
- 【最大M子段和】dp + 滚动数组
题目描述 给定 n 个数求这 n 个数划分成互不相交的 m 段的最大 m 子段和. 给出一段整数序列 A1,A2,A3,A4,...,Ax,...,An ,其中 1≤x≤n≤1,000,000, -3 ...
- 51nod1524 最大子段和V2
题干 N个整数组成的序列a[1],a[2],a[3],-,a[n],你可以对数组中的一对元素进行交换,并且交换后求a[1]至a[n]的最大子段和,所能得到的结果是所有交换中最大的.当所给的整数均为负数 ...
随机推荐
- php GD图片四角圆形处理
<?php /** * blog:http://www.zhaokeli.com * 处理四角圆图片 * @param string $imgpath 源图片路径 * @param intege ...
- hdcms v5.7.0学习笔记
hdcms v5.7.0学习笔记 https://note.youdao.com/ynoteshare1/index.html?id=c404d63ac910eb15a440452f73d6a6db& ...
- 2.5 进程控制之wait函数
一.绪论 一个进程在终止时会关闭所有文件描述符,释放在用户空间分配的内存,但它的PCB还保留着,内核在其中保存了一些信息:如果 是正常终止则保存着退出状态,如果是异常终止则保存着导致该进程终止的信号是 ...
- flask 中访问时后台错误 error: [Errno 32] Broken pipe
解决办法:app.run(threaded=True) 个人理解:flask默认单线程,访问一个页面时会访问到很多页面,比如一些图片,加入参数使其为多线程
- ssh 远程命令
远程拷贝文件,scp -r 的常用方法: 1.使用该命令的前提条件要求目标主机已经成功安装openssh-server 如没有安装使用 sudo apt-get install openssh-ser ...
- 分布式系统的CAP(Redis)
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点.而由于当前的网络硬件肯定会出现延迟丢包等问题,所以 分区容忍性是我们必须需要实现的. 所以我们只能在一致性和可用性之间进行权衡,没有NoSQ ...
- Python3 适合初学者学习的银行账户登录系统
一.所用知识点: 1. for循环与if判断的结合 2. %s占位符的使用 3. 辅助标志的使用(标志位) 4. break的使用 二.代码示例: ''' 银行登录系统 ''' uname = &qu ...
- AHOI2018 (暨HNOI2018)编外滚粗记
Day0: 向老师打了声报告就偷偷摸摸溜出了学校……感谢门卫师傅没把我当贼抓起来 车上背了一遍FFT,SAM的板子.嘴巴ac了两道CC水题.离线刷了一波知乎. 酒店好评. Day1: 不知不觉就开考了 ...
- 实用脚本 4 -- Makefile(不同文件下的多个可执行文件or静态库编译到同一目录下)
不同文件下的多个可执行文件编译到同一目录下,这样方便观察编译结果,从而方便进程操作.使用时根据自己的需要在进行局部修改(如 链接库.目标文件等等). 1..bashrc 中设置编译主目录(例如) ex ...
- 环境变量 - JDK
Linux 1. 备份并编辑配置文件 # cp /etc/profile /etc/profile.bak # vi /etc/profile 2. 设置JDK环境变量 export JAVA_HOM ...