虚树模板题~洛谷P2495

第一次写虚树,感觉好厉害呀~首先,这道题目的树形dp是非常显然的,要控制一个点&其子树所有点,要么在子树内部割边,要么直接切点该点与父亲的连边。所以dp[u]表示控制u点所需的最小代价。只是,注意到这样dp的复杂度是O(nm)的,十分不可接受,妥妥的TLE。不过,题目给出的条件中还有一条:Σki<=500000;说明虽然总共的点很多,但实际上每一次对答案可能有影响的点很少。

再一次想到之前dp的时候就应该发现的性质:一条链上,只需要在意链首的点(控制了链首也就控制了整棵子树),这样我们就可以想到:要是这一棵树很小,能够把对答案没有贡献的点尽量都去掉就可以以很小的复杂度完成每一轮询问的dp了。

怎样构建一棵虚树呢?首先,将整颗树dfs一遍,保存每一个点的dfs序号(记为dfn[i])。对于一次询问中的点:a[i]而言,将其按照dfs序从小到大排序,之后两两求出lca,排除那些在同一条链上的点(只保留链首)。之后,我们将1号点放入栈中。这个栈是一个单调栈,保证在任何时候栈中的元素都是一条链,且栈顶元素深度最大。我们记栈顶元素与当前点(之前保留下来的点)的lca为lca,之后的操作就十分显然了,我们要不断的将栈顶元素退栈(在退栈的同时连边构造虚树),直到退回lca与当前元素的那一条链上。注意如果lca不是最后的栈顶元素,lca也要进栈(在虚树上必须保留的一个点,记录了分叉的情况)。最后不要忘记将剩下的元素也用边连起来。

在虚树上面跑dp,一共也没几个点,自然就跑得很快啦。

#include <bits/stdc++.h>
using namespace std;
#define INF 99999999999LL
#define maxn 280000
#define ll long long
int timer, cnp = , n, m, head[maxn], dfn[maxn], dep[maxn], gra[maxn][];
int a[maxn], s[maxn], top, tot;
ll val[maxn], dp[maxn];
struct edge
{
int to, last;
ll co;
}E[maxn * ]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} bool cmp(int a, int b)
{
return dfn[a] < dfn[b];
} void add(int x, int y, int co = )
{
if(x == y) return;
E[cnp].to = y, E[cnp].co = co;
E[cnp].last = head[x], head[x] = cnp ++;
} int LCA(int x, int y)
{
if(dep[x] < dep[y]) swap(x, y);
for(int i = ; ~i; i --)
if(dep[gra[x][i]] >= dep[y]) x = gra[x][i];
for(int i = ; ~i; i --)
if(gra[x][i] != gra[y][i]) x = gra[x][i], y = gra[y][i];
return (x == y) ? x : gra[x][];
} void dfs(int u, int fa)
{
gra[u][] = fa, dfn[u] = ++ timer, dep[u] = dep[fa] + ;
for(int i = ; i <= ; i ++) gra[u][i] = gra[gra[u][i - ]][i - ];
for(int i = head[u]; i; i = E[i].last)
{
int v = E[i].to;
if(v == fa) continue;
val[v] = min(E[i].co, val[u]);
dfs(v, u);
}
} void DP(int u, int fa)
{
ll c = ; dp[u] = val[u];
for(int i = head[u]; i; i = E[i].last)
{
int v = E[i].to;
if(v == fa) continue;
DP(v, u);
c += dp[v];
}
head[u] = ;
if(c && c < val[u]) dp[u] = c;
} void solve()
{
int k = read();
for(int i = ; i <= k; i ++) a[i] = read();
sort(a + , a + + k, cmp);
cnp = , s[] = ; top = , tot = ;
for(int i = ; i <= k; i ++) if(LCA(a[i], a[tot]) != a[tot]) a[++ tot] = a[i];
for(int i = ; i <= tot; i ++)
{
int lca = LCA(s[top], a[i]);
while()
{
if(dep[lca] >= dep[s[top - ]])
{
add(lca, s[top]);
top --;
if(lca != s[top]) s[++ top] = lca;
break;
}
add(s[top - ], s[top]), top --;
}
s[++ top] = a[i];
}
while(top > ) add(s[top - ], s[top]), top --;
DP(, );
printf("%lld\n", dp[]);
} int main()
{
n = read();
val[] = INF;
for(int i = ; i <= n - ; i ++)
{
int x = read(), y = read(), z = read();
add(x, y, z), add(y, x, z);
}
dfs(, );
memset(head, , sizeof(head));
m = read();
for(int i = ; i <= m; i ++) solve();
return ;
}

【题解】SDOI2011消耗战的更多相关文章

  1. 【LG2495】[SDOI2011]消耗战

    [LG2495][SDOI2011]消耗战 题面 洛谷 题解 参考博客 题意 给你\(n\)个点的一棵树 \(m\)个询问,每个询问给出\(k\)个点 求将这\(k\)个点与\(1\)号点断掉的最小代 ...

  2. 【BZOJ2286】[Sdoi2011]消耗战 虚树

    [BZOJ2286][Sdoi2011]消耗战 Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的 ...

  3. BZOJ2286 [Sdoi2011]消耗战 和 BZOJ3611 [Heoi2014]大工程

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6371  Solved: 2496[Submit][Statu ...

  4. 洛谷P2495 [SDOI2011]消耗战(虚树dp)

    P2495 [SDOI2011]消耗战 题目链接 题解: 虚树\(dp\)入门题吧.虚树的核心思想其实就是每次只保留关键点,因为关键点的dfs序的相对大小顺序和原来的树中结点dfs序的相对大小顺序都是 ...

  5. BZOJ 2286: [Sdoi2011]消耗战

    2286: [Sdoi2011消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2082  Solved: 736[Submit][Status] ...

  6. bzoj 2286: [Sdoi2011]消耗战 虚树+树dp

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 在一 ...

  7. bzoj千题计划254:bzoj2286: [Sdoi2011]消耗战

    http://www.lydsy.com/JudgeOnline/problem.php?id=2286 虚树上树形DP #include<cmath> #include<cstdi ...

  8. AC日记——[SDOI2011]消耗战 洛谷 P2495

    [SDOI2011]消耗战 思路: 建虚树走树形dp: 代码: #include <bits/stdc++.h> using namespace std; #define INF 1e17 ...

  9. [BZOJ2286][SDOI2011]消耗战(虚树DP)

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 4998  Solved: 1867[Submit][Statu ...

  10. BZOJ2286 [Sdoi2011]消耗战 【虚树 + 树形Dp】

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MB Submit: 4261  Solved: 1552 [Submit][Sta ...

随机推荐

  1. jQuery代码解释(基本语法)

    html中jquery的以下用法 求解: var header = {}; header.ajaxCallComplete = false; header.login = false; header. ...

  2. mybatis报错:sql中有条件语句时出现属性没有getter的异常

    Mybatis问题:在使用条件语句动态设置SQL语句时出现如下错误 Caused by: org.apache.ibatis.reflection.ReflectionException: There ...

  3. C#正则表达式Regex类的使用

    C#中为正则表达式的使用提供了非常强大的功能,这就是Regex类.这个包包含于System.Text.RegularExpressions命名空间下面,而这个命名空间所在DLL基本上在所有的项目模板中 ...

  4. dedecms织梦首页被篡改 网站被黑被跳转的解决办法建议

    2018年的中秋节即将来临,我们Sine安全公司,最近接到很多用dedecms程序的企业公司网站客户的反馈,说是公司网站经常被篡改,包括网站首页的标题内容以及描述内容,都被改成了什么北京赛车,北京PK ...

  5. C语言实现计算二进制数字1的个数

    #include<stdio.h> #include<stdlib.h> int print_one_bits01(unsigned int value){ //0000 11 ...

  6. Sqoop的安装配置及使用

    一.Sqoop基础:连接关系型数据库与Hadoop的桥梁 1.1 Sqoop的基本概念 Hadoop正成为企业用于大数据分析的最热门选择,但想将你的数据移植过去并不容易.Apache Sqoop正在加 ...

  7. 【python3.X】Scrapy学习途径参考

    如何爬取属性在不同页面的itemhttp://scrapy-chs.readthedocs.io/zh_CN/0.24/topics/request-response.html#topics-requ ...

  8. Linux下创建pycharm的快捷方式

    第一步:创建桌面快捷方式文件Pycharm.desktop,并打开 sudo gedit /usr/share/applications/Pycharm.desktop 第二步:在打开的文件Pycha ...

  9. 使用hibernate连接Oracle时的权限问题

    在使用hibernate对象关系映射连接和创建表的时候,会涉及到很多权限问题,有些数据库管理会将权限设的很细,我们可以根据后台日志错误和异常信息作出判断. 比如下图所示这个错误(这是我在给银行投产系统 ...

  10. ASP NET Core ---POST, PUT, PATCH, DELETE,Model 验证

    参照 草根专栏- ASP.NET Core + Ng6 实战:https://v.qq.com/x/page/u0765jbwc6f.html 一.POST 安全性和幂等性 安全性是指方法执行后并不会 ...