BZOJ4446 SCOI2015小凸玩密室(树形dp)
设f[i][j]为由根进入遍历完i子树,最后一个到达的点是j时的最小代价,g[i][j]为由子树内任意一点开始遍历完i子树,最后一个到达的点是j时的最小代价,因为是一棵完全二叉树,状态数量是nlogn的。转移考虑四种走法:根→左子树→右子树;根→右子树→左子树;左子树→根→右子树;右子树→根→左子树 即可。好像和大多数题解不一样,明明感觉这种做法比较显然。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 200010
#define inf 100000000000000000ll
int n,a[N],p[N],deep[N],t;
vector<int> son[N];
vector<long long> f[N],g[N];
struct data{int to,nxt,len;
}edge[N];
void addedge(int x,int y,int z){t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].len=z,p[x]=t;}
void dfs(int k)
{
int cnt=;
for (int i=p[k];i;i=edge[i].nxt)
{
cnt++;
deep[edge[i].to]=deep[k]+edge[i].len;
dfs(edge[i].to);
for (int j=;j<son[edge[i].to].size();j++)
son[k].push_back(son[edge[i].to][j]);
}
son[k].push_back(k);
if (cnt==) {f[k].push_back();g[k].push_back();return;}
if (cnt==)
{
long long v=inf;
for (int i=;i<son[k].size()-;i++)
f[k].push_back(f[edge[p[k]].to][i]+1ll*edge[p[k]].len*a[edge[p[k]].to]),
g[k].push_back(f[k][i]),v=min(v,f[edge[p[k]].to][i]+1ll*(deep[son[edge[p[k]].to][i]]-deep[k])*a[k]);
f[k].push_back(inf),g[k].push_back(v);
}
else
{
long long P=inf,Q=inf,X=inf,Y=inf;
int x=edge[p[k]].to,y=edge[edge[p[k]].nxt].to,w=edge[p[k]].len,v=edge[edge[p[k]].nxt].len;
for (int i=;i<son[x].size();i++)
P=min(P,f[x][i]+1ll*w*a[x]+1ll*(deep[son[x][i]]-deep[k])*a[y]),
X=min(X,g[x][i]+1ll*(deep[son[x][i]]-deep[k])*a[k]);
for (int i=;i<son[y].size();i++)
Q=min(Q,f[y][i]+1ll*v*a[y]+1ll*(deep[son[y][i]]-deep[k])*a[x]),
Y=min(Y,g[y][i]+1ll*(deep[son[y][i]]-deep[k])*a[k]);
X=min(X,P),Y=min(Y,Q);
for (int i=;i<son[x].size();i++)
f[k].push_back(Q+1ll*w*a[x]+f[x][i]),g[k].push_back(Y+1ll*w*a[x]+f[x][i]);
for (int i=;i<son[y].size();i++)
f[k].push_back(P+1ll*v*a[y]+f[y][i]),g[k].push_back(X+1ll*v*a[y]+f[y][i]);
f[k].push_back(inf),g[k].push_back(inf);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4446.in","r",stdin);
freopen("bzoj4446.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<n;i++) addedge(i+>>,i+,read());
dfs();
long long ans=inf;
for (int i=;i<son[].size();i++) ans=min(ans,g[][i]);
cout<<ans;
return ;
}
BZOJ4446 SCOI2015小凸玩密室(树形dp)的更多相关文章
- [BZOJ4446]SCoi2015 小凸玩密室 树形DP(烧脑高能预警)
4446: [Scoi2015]小凸玩密室 Time Limit: 10 Sec Memory Limit: 128 MB Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点 ...
- BZOJ4446:[SCOI2015]小凸玩密室(树形DP)
Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯泡即可逃出密室. 每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要 ...
- LUOGU P4253 [SCOI2015]小凸玩密室(树形dp)
传送门 解题思路 玄学树形\(dp\),题目描述极其混乱...看错了两次题,设首先根据每次必须点完子树里的灯才能点别的,那么点灯情况只有两种,第一种是点到某一个祖先,第二种是点到某一个祖先的兄弟.所以 ...
- BZOJ.4446.[SCOI2015]小凸玩密室(树形DP)
BZOJ LOJ 洛谷 (下面点亮一个灯泡就说成染色了,感觉染色比较顺口... 注意完全二叉树\(\neq\)满二叉树,点亮第一个灯泡\(\neq\)第一次点亮一号灯泡,根节点应该就是\(1\)... ...
- BZOJ4446 [Scoi2015]小凸玩密室 【树形Dp】
题目 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要花费,之后每点亮4 ...
- 2019.03.26 bzoj4446: [Scoi2015]小凸玩密室(树形dp)
传送门 题意简述: 给一棵完全二叉树,有点权aia_iai和边权,每个点有一盏灯,现在要按一定要求点亮: 任意时刻点亮的灯泡必须连通 点亮一个灯泡后必须先点亮其子树 费用计算如下:点第一盏灯不要花费 ...
- BZOJ4446: [Scoi2015]小凸玩密室
用ui,j表示走完i的子树后走到i的深度为j的祖先的兄弟的最小代价: 用vi,j表示走完i的子树后走到i的深度为j的祖先的最小代价,用u算出v. 枚举起点,计算答案. #include<bits ...
- [bzoj4446] [loj#2009] [Scoi2015] 小凸玩密室
Description 小凸和小方相约玩密室逃脱,这个密室是一棵有 \(n\) 个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯泡即可逃出密室.每个灯泡有个权值 \(Ai\) ,每条边也有个权值 \ ...
- bzoj 4446: [Scoi2015]小凸玩密室
Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要 ...
随机推荐
- Linux系统磁盘管理
1 Linux磁盘管理体系简介 Linux磁盘管理分为五个步骤:首先在服务器上添加相应的硬盘(如/dev/sda.sdb.sdc等),对全新的服务器(即没有操作系统)做硬RAID0.RAID1.RAI ...
- 前端javaScript经典面试题
1.alert(1&&2),alert(1||0) alert(1&&2)的结果是2 只要“&&”前面是false,无论“&&”后面是t ...
- 通过swagger下载的文件乱码解决方法,求解
这里的数据显示 点击Download Templates下载之后是显示一个response流都不是一个xlsx文件 这个是由什么原因造成的,求解?
- 【poe设备加电配置】
开启接口的poe功能: [interface_name]: 配置poe端口的最大功率: [interface_name[: 配置poe的端口工作模式: [interface_name[: 配置poe端 ...
- 【ospf-路由聚合】
- 使用virtual安装Windows系列操作系统总结
最近在安装Windows操作系统的过程中,发现总是报错,无法安装成功,后来经过不断地摸索,发现根本的问题在于镜像,所以在以后的大文件传输下载后,一定要校验其MD5值是否与源文件一致,需要的朋友可以联系 ...
- (数据科学学习手札22)主成分分析法在Python与R中的基本功能实现
上一篇中我们详细介绍推导了主成分分析法的原理,并基于Python通过自编函数实现了挑选主成分的过程,而在Python与R中都有比较成熟的主成分分析函数,本篇我们就对这些方法进行介绍: R 在R的基础函 ...
- (数据科学学习手札06)Python在数据框操作上的总结(初级篇)
数据框(Dataframe)作为一种十分标准的数据结构,是数据分析中最常用的数据结构,在Python和R中各有对数据框的不同定义和操作. Python 本文涉及Python数据框,为了更好的视觉效果, ...
- loj136 (最小瓶颈路,多次询问)
题目描述 给定一个包含 n nn 个节点和 m mm 条边的图,每条边有一个权值.你的任务是回答 k kk 个询问,每个询问包含两个正整数 s ss 和 t tt 表示起点和终点,要求寻找从 s ss ...
- 二叉树和二叉查找树--数据结构与算法JavaScript描述(10)
二叉树和二叉查找树 概念 树是一种非线性的数据结构,以分层的方式存储数据. 树被用来存储具有层级关系的数据,比如文件系统的文件: 树还被用来存储有序列表. 一棵树最上面的节点称为根节点. 如果一个节点 ...