本人的开发环境:
1.虚拟机centos 6.5
2.jdk 1.8
3.spark2.2.0
4.scala 2.11.8
5.maven 3.5.2
    在开发和搭环境时必须注意版本兼容的问题,不然会出现很多莫名其妙的问题
 
 
1.启动spark master
./start-master.sh
 
2.启动worker
./bin/spark-class org.apache.spark.deploy.worker.Worker spark://master:7077
 
步骤1,2是必须在启动任务之前的。注意worker必须和flume的agent在同一节点,我这里是一台服务器调试,所以直接在同一台机器调试,相当于在一个端口A流出数据(telnet实现),获取数据并流入到同一IP的另一个端口B(flume实现),监听端口B数据并流式处理(Spark Streaming),写入数据库(mysql)。
 
3.spark streaming代码开发,flume push方式
package com.spark
 
import java.sql.DriverManager
 
import com.spark.ForeachRDDApp.createConnection
import org.apache.spark.SparkConf
import org.apache.spark.streaming.flume.FlumeUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
 
object FlumePushSparkStreaming {
 
  def main(args: Array[String]): Unit = {
 
    if( args.length != 2 ) {
        System.out.print("Usage:flumepushworkCount <hostname> <port>")
        System.exit(1)
    }
 
    val Array(hostname, port) = args
 
    val sparkConf = new SparkConf()
    val ssc = new StreamingContext(sparkConf, Seconds(5))
 
    val flumeStream = FlumeUtils.createStream(ssc, hostname, port.toInt)
 
    val result = flumeStream.map(x => new String(x.event.getBody.array()).trim)
      .flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
 
    result.print()
 
    result.foreachRDD(rdd => {   //注意1
      rdd.foreachPartition(partitionOfRecords => {
        val connection = createConnection()
        partitionOfRecords.foreach(record => {
          val sql = "insert into FlumeWordCount(word, wordcount) values('" + record._1 + "'," + record._2 + ")"
          connection.createStatement().execute(sql)
        })
        connection.close()
      })
    })
 
    ssc.start()
    ssc.awaitTermination()
  }
 
  /**
    * 获取MySQL的连接
    */
  def createConnection() = {
    Class.forName("com.mysql.jdbc.Driver")
    DriverManager.getConnection("jdbc:mysql://master:3306/imooc_spark", "root", "root")
  }
 
}
 代码很容易理解,在这就不解析了。不过程序还是不够好,还有优化的地方。请看注意1,优化地方:1.使用线程池的方法来连接mysql。2.Spqrk的闭包原理,在集群中,RDD传给执行器的只是副本,一个RDD并不是全部的数据,然而这里写进mysql数据正确是因为在同一个节点调试,所有的RDD只在本机器操作,因此数据都可以写进mysql。如果在集群中,可能结果是不一样的。解决办法:使用collect( )。
 
4.flume配置
flume_sparkstreaming_mysql.sources = netcat-source
flume_sparkstreaming_mysql.sinks = avro-sink
flume_sparkstreaming_mysql.channels = memory-channel
 
flume_sparkstreaming_mysql.sources.netcat-source.type = netcat
flume_sparkstreaming_mysql.sources.netcat-source.bind = master
flume_sparkstreaming_mysql.sources.netcat-source.port = 44444
 
flume_sparkstreaming_mysql.sinks.avro-sink.type = avro
flume_sparkstreaming_mysql.sinks.avro-sink.hostname = master
flume_sparkstreaming_mysql.sinks.avro-sink.port = 41414
 
flume_sparkstreaming_mysql.channels.memory-channel.type = memory
flume_sparkstreaming_mysql.sources.netcat-source.channels = memory-channel
flume_sparkstreaming_mysql.sinks.avro-sink.channel = memory-channel
flume的配置也很简单,需要注意的是这里是在服务器跑的, 注意黑体的地方,要写服务器的IP地址,而不是本地调试的那个IP。
 
3.打jar包并提交任务
./spark-submit --class com.spark.FlumePushSparkStreaming --master local[2] --packages org.apache.spark:spark-streaming-flume_2.11:2.2.0 /home/hadoop/tmp/spark.jar master 41414
 
4.启动flume-push方式
./flume-ng agent --name simple-agent --conf $FLUME_HOME/conf --conf-file $FLUME_HOME/conf/flume_push_streaming.conf -Dflume.root.logger=INFO,consol
 
5.建表
create table FlumeWordCount(
word varchar(50) default null,
wordcount int(10) default null
);
 
 
6.监听 master : 44444
 
 
7.mysql 查看数据
mysql> select * from FlumeWordCount;
 
 
8.终端打印
 
  
 
 
 

spark_flume_mysql 整合的更多相关文章

  1. [原创]mybatis中整合ehcache缓存框架的使用

    mybatis整合ehcache缓存框架的使用 mybaits的二级缓存是mapper范围级别,除了在SqlMapConfig.xml设置二级缓存的总开关,还要在具体的mapper.xml中开启二级缓 ...

  2. kindeditor4整合SyntaxHighlighter,让代码亮起来

    这一篇我将介绍如何让kindeditor4.x整合SyntaxHighlighter代码高亮,因为SyntaxHighlighter的应用非常广泛,所以将kindeditor默认的prettify替换 ...

  3. spring源码分析之freemarker整合

    FreeMarker是一款模板引擎: 即一种基于模板和要改变的数据, 并用来生成输出文本(HTML网页.电子邮件.配置文件.源代码等)的通用工具. 它不是面向最终用户的,而是一个Java类库,是一款程 ...

  4. FullCalendar应用——整合农历节气和节日

    FullCalendar用来做日程管理功能非常强大,但是唯一不足的地方是没有将中国农历历法加进去,今天我将结合实例和大家分享如何将中国农历中的节气和节日整合到FullCalendar中,从而增强其实用 ...

  5. SAP CRM 将组件整合至导航栏中

    到现在,我们已经可以让组件独立地显示.我们只是运行它.让它显示在Web UI中.让我们把组件整合进导航栏,使我们可以在正常登录Web UI时访问它. 步骤一: 为你的UI组件主窗体创建一个内向插件. ...

  6. Atitit.你这些项目不都是模板吗?不是原创  集成和整合的方式大总结

    Atitit.你这些项目不都是模板吗?不是原创  集成和整合的方式大总结 1.1. 乔布斯的名言:创新即整合(Creativity is just connecting things).1 1.2. ...

  7. github入门到上传本地项目【网上资源整合】

    [在原文章的基础上,修改了描述的不够详细的地方,对内容进行了扩充,整合了网上的一些资料] [内容主要来自http://www.cnblogs.com/specter45/p/github.html#g ...

  8. 三大框架SSH整合

    三大框架SSH整合 -------------------------------Spring整合Hibernate------------------------------- 一.为什么要整合Hi ...

  9. SSH框架整合(代码加文字解释)

    一.创建数据库并设置编码. A) create database oa default character set utf8. 二.MyEclipse工程 A) 在Myeclipse里创建web工程, ...

随机推荐

  1. apache配置多个虚拟主机 localhost访问不了解决方案

    在httpd-vhosts.conf,重定向localhost <VirtualHost *:80>    ServerAdmin webmaster@dummy-host2.exampl ...

  2. vmware 仅主机模式 ip配置

    首先关闭防火墙 主机(宿主机器 win7) 虚拟机(xp) 3..重要提示:  如果ping不通首先考虑防火墙的问题!!! vmware配置: nat模式下玩耍: 1. 配置nat的虚拟网卡:  2. ...

  3. (转)Mac下MySql安装经历(含安装错误排查、卸载多种折腾)

    在安装mysql的时候,活活折腾我两天.结果终于被我折腾成功了……一开始我就放了个错误:我下了32位版本的mysql:mysql-5.5.8-osx10.6-x86.dmg 须知在mac下装的是64位 ...

  4. 如何在局域网架设FTP(特别简单方便)

    https://files.cnblogs.com/files/wlphp/FTPserver.zip 在我上传的博客园文件下载下来 启动服务,设置账号密码(注意一定要关闭防火墙)

  5. 面试题:servlet jsp cook session 背1

    一.Servlet是什么?JSP是什么?它们的联系与区别是什么? Servlet是Java编写的运行在Servlet容器的服务端程序,狭义的Servlet是指Servlet接口,广义的Servlet是 ...

  6. solidity错误处理

    官方文档: https://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-requi ...

  7. tensorflow 中 feed的用法

    Feed 上述示例在计算图中引入了 tensor, 以常量或变量的形式存储. TensorFlow 还提供了 feed 机制, 该机制 可以临时替代图中的任意操作中的 tensor 可以对图中任何操作 ...

  8. p2148 [SDOI2009]E&D

    传送门 分析 https://www.luogu.org/blog/flashblog/solution-p2148 代码 #include<bits/stdc++.h> using na ...

  9. DataTable对象的操作问题

    DataTable,DataRow,DataClomun三种对象都是引用类型. C#中值的传递方式分为值传递与引用传递. 1.复制DataTable对象   //以下做法是错误的,dt1和dt2引用的 ...

  10. 制作3D旋转视频展示区

    CSS3 3D变形制作视频展示区 <!doctype html> <html lang="en"> <head> <meta charse ...