在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能。本文通过一个简单的例子详解这两个函数的作用。

1. 实例的背景说明

假定一个个人信息系统,需要记录系统中各个人的故乡、居住地、以及到过的城市。数据库设计如下:

Models.py 内容如下:

from django.db import models

class Province(models.Model):
name = models.CharField(max_length=10)
def __unicode__(self):
return self.name class City(models.Model):
name = models.CharField(max_length=5)
province = models.ForeignKey(Province)
def __unicode__(self):
return self.name class Person(models.Model):
firstname = models.CharField(max_length=10)
lastname = models.CharField(max_length=10)
visitation = models.ManyToManyField(City, related_name = "visitor")
hometown = models.ForeignKey(City, related_name = "birth")
living = models.ForeignKey(City, related_name = "citizen")
def __unicode__(self):
return self.firstname + self.lastname 

注1:创建的app名为“QSOptimize”

注2:为了简化起见,qsoptimize_province 表中只有2条数据:湖北省和广东省,qsoptimize_city表中只有三条数据:武汉市、十堰市和广州市  

2.select_related()

对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化

作用和方法

在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。以上例说明,如果我们需要打印数据库中的所有市及其所属省份,最直接的做法是:

>>> citys = City.objects.all()
>>> for c in citys:
... print c.province
... 

这样会导致线性的SQL查询,如果对象数量n太多,每个对象中有k个外键字段的话,就会导致n*k+1次SQL查询。在本例中,因为有3个city对象就导致了4次SQL查询:

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city` SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ; SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 2 ; SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ; 

注:这里的SQL语句是直接从Django的logger:‘django.db.backends’输出出来的

如果我们使用select_related()函数:

>>> citys = City.objects.select_related().all()
>>> for c in citys:
... print c.province
... 

就只有一次SQL查询,显然大大减少了SQL查询的次数:

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`,
`QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM`QSOptimize_city`
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) ; 

这里我们可以看到,Django使用了INNER JOIN来获得省份的信息。顺便一提这条SQL查询得到的结果如下:

+----+-----------+-------------+----+-----------+
| id | name | province_id | id | name |
+----+-----------+-------------+----+-----------+
| 1 | 武汉市 | 1 | 1 | 湖北省 |
| 2 | 广州市 | 2 | 2 | 广东省 |
| 3 | 十堰市 | 1 | 1 | 湖北省 |
+----+-----------+-------------+----+-----------+
3 rows in set (0.00 sec) 

使用方法

函数支持如下三种用法:
*fields 参数

select_related() 接受可变长参数,每个参数是需要获取的外键(父表的内容)的字段名,以及外键的外键的字段名、外键的外键的外键…。若要选择外键的外键需要使用两个下划线“__”来连接。

例如我们要获得张三的现居省份,可以用如下方式:

2
>>> zhangs = Person.objects.select_related('living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.living.province 

触发的SQL查询如下:

SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`,
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`,
`QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`,
`QSOptimize_province`.`name`
FROM `QSOptimize_person`
INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`living_id` = `QSOptimize_city`.`id`)
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`)
WHERE (`QSOptimize_person`.`lastname` = '三' AND `QSOptimize_person`.`firstname` = '张' ); 

可以看到,Django使用了2次 INNER JOIN 来完成请求,获得了city表和province表的内容并添加到结果表的相应列,这样在调用 zhangs.living的时候也不必再次进行SQL查询。

+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
| id | firstname | lastname | hometown_id | living_id | id | name | province_id | id | name |
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
| 1 | 张 | 三 | 3 | 1 | 1 | 武汉市 | 1 | 1 | 湖北省 |
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
1 row in set (0.00 sec) 

然而,未指定的外键则不会被添加到结果中。这时候如果需要获取张三的故乡就会进行SQL查询了:

>>> zhangs.hometown.province
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`,
`QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
WHERE `QSOptimize_city`.`id` = 3 ; SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 

同时,如果不指定外键,就会进行两次查询。如果深度更深,查询的次数更多。

值得一提的是,从Django 1.7开始,select_related()函数的作用方式改变了。在本例中,如果要同时获得张三的故乡和现居地的省份,在1.7以前你只能这样做:

>>> zhangs = Person.objects.select_related('hometown__province','living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.hometown.province
>>> zhangs.living.province 

但是1.7及以上版本,你可以像和queryset的其他函数一样进行链式操作:

>>> zhangs = Person.objects.select_related('hometown__province').select_related('living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.hometown.province
>>> zhangs.living.province 
depth 参数

select_related() 接受depth参数,depth参数可以确定select_related的深度。Django会递归遍历指定深度内的所有的OneToOneField和ForeignKey。以本例说明:

>>> zhangs = Person.objects.select_related(depth = d) 

d=1  相当于 select_related(‘hometown’,’living’)

d=2  相当于 select_related(‘hometown__province’,’living__province’)

无参数

select_related() 也可以不加参数,这样表示要求Django尽可能深的select_related。例如:zhangs = Person.objects.select_related().get(firstname=u”张”,lastname=u”三”)。但要注意两点:

  1. Django本身内置一个上限,对于特别复杂的表关系,Django可能在你不知道的某处跳出递归,从而与你想的做法不一样。具体限制是怎么工作的我表示不清楚。
  2. Django并不知道你实际要用的字段有哪些,所以会把所有的字段都抓进来,从而会造成不必要的浪费而影响性能。

3. 小结

  1. select_related主要针一对一和多对一关系进行优化。
  2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
  3. 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
  4. 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
  5. 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
  6. Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。

详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化的更多相关文章

  1. 这个贴子的内容值得好好学习--实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化

    感觉要DJANGO用得好,ORM必须要学好,不管理是内置的,还是第三方的ORM. 最最后还是要到SQL.....:( 这一关,慢慢练啦.. 实例详解Django的 select_related 和 p ...

  2. 转载 :实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(一)

    在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能.本文通过一个简单的例子详解这两个函数的作用.虽然Q ...

  3. 转 实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(三)

    这是本系列的最后一篇,主要是select_related() 和 prefetch_related() 的最佳实践. 第一篇在这里 讲例子和select_related() 第二篇在这里 讲prefe ...

  4. Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(一)

    在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能.本文通过一个简单的例子详解这两个函数的作用.虽然Q ...

  5. Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(三)

    4.一些实例 如果我们想要获得所有家乡是湖北的人,最无脑的做法是先获得湖北省,再获得湖北的所有城市,最后获得故乡是这个城市的人.就像这样: 1 2 3 4 5 >>> hb = Pr ...

  6. Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(二)

    3. prefetch_related() 对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化.或许你会说,没有一个叫OneToMan ...

  7. 实例具体解释Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(二)

    这是本系列的第二篇,内容是 prefetch_related() 函数的用途.实现途径.以及用法. 本系列的第一篇在这里 第三篇在这里 3. prefetch_related() 对于多对多字段(Ma ...

  8. Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化

    引言 在数据库存在外键的其情况下,使用select_related()和prefetch_related()很大程度上减少对数据库的请求次数以提高性能 1.实例准备 模型: from django.d ...

  9. 转 实例具体解释DJANGO的 SELECT_RELATED 和 PREFETCH_RELATED 函数对 QUERYSET 查询的优化(二)

    https://blog.csdn.net/cugbabybear/article/details/38342793 这是本系列的第二篇,内容是 prefetch_related() 函数的用途.实现 ...

随机推荐

  1. java中常用的帮助类。加快开发速度

    数据库帮助类 package com.cwnu.uitl; import java.sql.*; /** * 数据库基础操作实现类 * * @author BlackWinter * * @date ...

  2. poscms仿站知识点总结(二)

    1.相同类型div添加不同class 遇到一个样式上的问题,模板页面有8个子项,样式都是一样,至于数据是可以用for循环来添加的,但是for循环的时候,每个div的 类名是无法及时更改的,但是模板页面 ...

  3. 事件穿透父层 直达子层 pointer-events:none

    之前我也做过一些canvas特效,往往在canvas全屏时,canvas下层的div就无法进行dom的事件操作,点击之类的就失灵了.之前我的做法要么就是在canvas上加入点击事件,穿透到下层,或者把 ...

  4. Java [Leetcode 383]Ransom Note

    题目描述: Given
 an 
arbitrary
 ransom
 note
 string 
and 
another 
string 
containing 
letters from
 al ...

  5. deep Learning 之入门一 (ps:知乎上看到的大佬写的非常好,所以自己记录下)

    作者:Jacky Yang 链接:https://www.zhihu.com/question/26006703/answer/129209540 来源:知乎 著作权归作者所有.商业转载请联系作者获得 ...

  6. Hibernate中 一 二级缓存及查询缓存(1)

    最近趁有空学习了一下Hibernate的缓存,其包括一级缓存,二级缓存和查询缓存(有些是参照网络资源的): 一.一级缓存     一级缓存的生命周期和session的生命周期一致,当前sessioin ...

  7. Instruments检测解决内存泄露以及进行性能测试

    1.启动Xcode自带的Instruments.这里有两种方法启动. 方法一: 方法二: 2.选择Leaks选项.(该选项用来进行内存泄漏检测) 说明: Leaks:找到引发内存泄漏的起点. Time ...

  8. numpy之初识ndarray

    Numpy ndarray numpy的最重要特点就是其N维数组对象(ndarray). ndarray的可以对整块数据执行数学运算,语法与标量元素的元素的运算一致. 如: import numpy ...

  9. asp select count(*) 用 open还是excute

    dSql1="select count(*) from test_hist where uid="&cid  'dRs1.open dSql1,tConn,1,1  'dS ...

  10. bzoj 2555 SubString——后缀自动机+LCT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2555 要维护 right 集合的大小.因为 fa 会变,且 fa 构成一棵树,所以考虑用 L ...