DP Intro - OBST
http://radford.edu/~nokie/classes/360/dp-opt-bst.html
Overview
Optimal Binary Search Trees - Problem
- Problem:
- Sorted set of keys k1,k2,...,knk1,k2,...,kn
- Key probabilities: p1,p2,...,pnp1,p2,...,pn
- What tree structure has lowest expected cost?
- Cost of searching for node ii
: cost(ki)=depth(ki)+1cost(ki)=depth(ki)+1
Expected Cost of tree =∑i=1ncost(ki)pi=∑i=1n(depth(ki)+1)pi=∑i=1ndepth(ki)pi+∑i=1npi=(∑i=1ndepth(ki)pi)+1Expected Cost of tree =∑i=1ncost(ki)pi=∑i=1n(depth(ki)+1)pi=∑i=1ndepth(ki)pi+∑i=1npi=(∑i=1ndepth(ki)pi)+1
Optimal BST - Example
- Example:
- Probability table (pipi
is the probabilty of key kiki
:
| ii | 1 | 2 | 3 | 4 | 5 |
| kiki | k1k1 | k2k2 | k3k3 | k4k4 | k5k5 |
| pipi | 0.25 | 0.20 | 0.05 | 0.20 | 0.30 |

- Given: k1<k2<k3<k4<k5k1<k2<k3<k4<k5
- Two BSTs
- Tree 1:
- k2/[k1,k4]/[nil,nil],[k3,k5]k2/[k1,k4]/[nil,nil],[k3,k5]
- cost = 0(0.20) + 1(0.25+0.20) +2(0.05+0.30) + 1 = 1.15 + 1
- Tree 2:
- k2/[k1,k5]/[nil,nil],[k4,nil]/[nil,nil],[nil,nil],[k3,nil],[nil,nil]k2/[k1,k5]/[nil,nil],[k4,nil]/[nil,nil],[nil,nil],[k3,nil],[nil,nil]
- cost = 0(0.20) + 1(0.25+0.30) +2(0.20) + 3(0.05) + 1 = 1.10 + 1
- Notice that a deeper tree has expected lower cost
Optimal BST - DP Approach
- Optimal BST TT
must have subtree T′T′
for keys ki…kjki…kj
which is optimal for those keys
- Cut and paste proof: if T′T′
not optimal, improving it will improve TT
, a contradiction
- Algorithm for finding optimal tree for sorted, distinct keys ki…kjki…kj
:
- For each possible root krkr
for i≤r≤ji≤r≤j
- Make optimal subtree for ki,…,kr−1ki,…,kr−1
- Make optimal subtree for kr+1,…,kjkr+1,…,kj
- Select root that gives best total tree
- Formula: e(i,j)e(i,j)
= expected number of comparisons for optimal tree for keys ki…kjki…kj
e(i,j)={0, if i=j+1mini≤r≤j{e(i,r−1)+e(r+1,j)+w(i,j)}, if i≤je(i,j)={0, if i=j+1mini≤r≤j{e(i,r−1)+e(r+1,j)+w(i,j)}, if i≤j
- where w(i,j)=∑k=ijpiw(i,j)=∑k=ijpi
is the increase in cost if ki…kjki…kj
is a subtree of a node
- Work bottom up and remember solution
Optimal BST - Algorithm and Performance
- Brute Force: try all tree configurations
- Ω(4n / n3/2) different BSTs with n nodes
- DP: bottom up with table: for all possible contiguous sequences of keys and all possible roots, compute optimal subtrees
for size in 1 .. n loop -- All sizes of sequences
for i in 1 .. n-size+1 loop -- All starting points of sequences
j := i + size - 1
e(i, j) := float'max;
for r in i .. j loop -- All roots of sequence ki .. kj
t := e(i, r-1) + e(r+1, j) + w(i, j)
if t < e(i, j) then
e(i, j) := t
root(i, j) := r
end if
end loop
end loop
end loop
- Θ(n3)
- Can, of course, also use (memoized) recursion
http://www.geeksforgeeks.org/dynamic-programming-set-24-optimal-binary-search-tree/
Dynamic Programming | Set 24 (Optimal Binary Search Tree)
Given a sorted array keys[0.. n-1] of search keys and an array freq[0.. n-1] of frequency counts, where freq[i] is the number of searches to keys[i]. Construct a binary search tree of all keys such that the total cost of all the searches is as small as possible.
Let us first define the cost of a BST. The cost of a BST node is level of that node multiplied by its frequency. Level of root is 1.
Example 1
Input: keys[] = {10, 12}, freq[] = {34, 50}
There can be following two possible BSTs
10 12
\ /
12 10
I II
Frequency of searches of 10 and 12 are 34 and 50 respectively.
The cost of tree I is 34*1 + 50*2 = 134
The cost of tree II is 50*1 + 34*2 = 118 Example 2
Input: keys[] = {10, 12, 20}, freq[] = {34, 8, 50}
There can be following possible BSTs
10 12 20 10 20
\ / \ / \ /
12 10 20 12 20 10
\ / / \
20 10 12 12
I II III IV V
Among all possible BSTs, cost of the fifth BST is minimum.
Cost of the fifth BST is 1*50 + 2*34 + 3*8 = 142
1) Optimal Substructure:
The optimal cost for freq[i..j] can be recursively calculated using following formula.
We need to calculate optCost(0, n-1) to find the result.
The idea of above formula is simple, we one by one try all nodes as root (r varies from i to j in second term). When we make rth node as root, we recursively calculate optimal cost from i to r-1 and r+1 to j.
We add sum of frequencies from i to j (see first term in the above formula), this is added because every search will go through root and one comparison will be done for every search.
2) Overlapping Subproblems
Following is recursive implementation that simply follows the recursive structure mentioned above.
// A naive recursive implementation of optimal binary search tree problem
#include <stdio.h>
#include <limits.h> // A utility function to get sum of array elements freq[i] to freq[j]
int sum(int freq[], int i, int j); // A recursive function to calculate cost of optimal binary search tree
int optCost(int freq[], int i, int j)
{
// Base cases
if (j < i) // If there are no elements in this subarray
return 0;
if (j == i) // If there is one element in this subarray
return freq[i]; // Get sum of freq[i], freq[i+1], ... freq[j]
int fsum = sum(freq, i, j); // Initialize minimum value
int min = INT_MAX; // One by one consider all elements as root and recursively find cost
// of the BST, compare the cost with min and update min if needed
for (int r = i; r <= j; ++r)
{
int cost = optCost(freq, i, r-1) + optCost(freq, r+1, j);
if (cost < min)
min = cost;
} // Return minimum value
return min + fsum;
} // The main function that calculates minimum cost of a Binary Search Tree.
// It mainly uses optCost() to find the optimal cost.
int optimalSearchTree(int keys[], int freq[], int n)
{
// Here array keys[] is assumed to be sorted in increasing order.
// If keys[] is not sorted, then add code to sort keys, and rearrange
// freq[] accordingly.
return optCost(freq, 0, n-1);
} // A utility function to get sum of array elements freq[i] to freq[j]
int sum(int freq[], int i, int j)
{
int s = 0;
for (int k = i; k <=j; k++)
s += freq[k];
return s;
} // Driver program to test above functions
int main()
{
int keys[] = {10, 12, 20};
int freq[] = {34, 8, 50};
int n = sizeof(keys)/sizeof(keys[0]);
printf("Cost of Optimal BST is %d ", optimalSearchTree(keys, freq, n));
return 0;
}
Output:
Cost of Optimal BST is 142
Time complexity of the above naive recursive approach is exponential. It should be noted that the above function computes the same subproblems again and again. We can see many subproblems being repeated in the following recursion tree for freq[1..4].

Since same suproblems are called again, this problem has Overlapping Subprolems property. So optimal BST problem has both properties (see thisand this) of a dynamic programming problem. Like other typical Dynamic Programming(DP) problems, recomputations of same subproblems can be avoided by constructing a temporary array cost[][] in bottom up manner.
Dynamic Programming Solution
Following is C/C++ implementation for optimal BST problem using Dynamic Programming. We use an auxiliary array cost[n][n] to store the solutions of subproblems. cost[0][n-1] will hold the final result. The challenge in implementation is, all diagonal values must be filled first, then the values which lie on the line just above the diagonal. In other words, we must first fill all cost[i][i] values, then all cost[i][i+1] values, then all cost[i][i+2] values. So how to fill the 2D array in such manner> The idea used in the implementation is same as Matrix Chain Multiplication problem, we use a variable ‘L’ for chain length and increment ‘L’, one by one. We calculate column number ‘j’ using the values of ‘i’ and ‘L’.
// Dynamic Programming code for Optimal Binary Search Tree Problem
#include <stdio.h>
#include <limits.h> // A utility function to get sum of array elements freq[i] to freq[j]
int sum(int freq[], int i, int j); /* A Dynamic Programming based function that calculates minimum cost of
a Binary Search Tree. */
int optimalSearchTree(int keys[], int freq[], int n)
{
/* Create an auxiliary 2D matrix to store results of subproblems */
int cost[n][n]; /* cost[i][j] = Optimal cost of binary search tree that can be
formed from keys[i] to keys[j].
cost[0][n-1] will store the resultant cost */ // For a single key, cost is equal to frequency of the key
for (int i = 0; i < n; i++)
cost[i][i] = freq[i]; // Now we need to consider chains of length 2, 3, ... .
// L is chain length.
for (int L=2; L<=n; L++)
{
// i is row number in cost[][]
for (int i=0; i<=n-L+1; i++)
{
// Get column number j from row number i and chain length L
int j = i+L-1;
cost[i][j] = INT_MAX; // Try making all keys in interval keys[i..j] as root
for (int r=i; r<=j; r++)
{
// c = cost when keys[r] becomes root of this subtree
int c = ((r > i)? cost[i][r-1]:0) +
((r < j)? cost[r+1][j]:0) +
sum(freq, i, j);
if (c < cost[i][j])
cost[i][j] = c;
}
}
}
return cost[0][n-1];
} // A utility function to get sum of array elements freq[i] to freq[j]
int sum(int freq[], int i, int j)
{
int s = 0;
for (int k = i; k <=j; k++)
s += freq[k];
return s;
} // Driver program to test above functions
int main()
{
int keys[] = {10, 12, 20};
int freq[] = {34, 8, 50};
int n = sizeof(keys)/sizeof(keys[0]);
printf("Cost of Optimal BST is %d ", optimalSearchTree(keys, freq, n));
return 0;
}
Output:
Cost of Optimal BST is 142
Notes
1) The time complexity of the above solution is O(n^4). The time complexity can be easily reduced to O(n^3) by pre-calculating sum of frequencies instead of calling sum() again and again.
2) In the above solutions, we have computed optimal cost only. The solutions can be easily modified to store the structure of BSTs also. We can create another auxiliary array of size n to store the structure of tree. All we need to do is, store the chosen ‘r’ in the innermost loop.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
DP Intro - OBST的更多相关文章
- DP Intro - poj 2342 Anniversary party
今天开始做老师给的专辑,打开DP专辑 A题 Rebuilding Roads 直接不会了,发现是树形DP,百度了下了该题,看了老半天看不懂,想死的冲动都有了~~~~ 最后百度了下,树形DP入门,找到了 ...
- DP Intro - poj 1947 Rebuilding Roads
算法: dp[i][j]表示以i为根的子树要变成有j个节点的状态需要减掉的边数. 考虑状态转移的时候不考虑i的父亲节点,就当不存在.最后统计最少减去边数的 时候+1. 考虑一个节点时,有两种选择,要么 ...
- DP Intro - poj 1947 Rebuilding Roads(树形DP)
版权声明:本文为博主原创文章,未经博主允许不得转载. Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissi ...
- DP Intro - Tree DP Examples
因为上次比赛sb地把一道树形dp当费用流做了,受了点刺激,用一天时间稍微搞一下树形DP,今后再好好搞一下) 基于背包原理的树形DP poj 1947 Rebuilding Roads 题意:给你一棵树 ...
- DP Intro - Tree POJ2342 Anniversary party
POJ 2342 Anniversary party (树形dp 入门题) Anniversary party Time Limit: 1000MS Memory Limit: 65536K To ...
- DP Intro - Tree DP
二叉苹果树 题目 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点 ...
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...
- AEAI DP V3.7.0 发布,开源综合应用开发平台
1 升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...
随机推荐
- [vscode] github travis 集成问题
问题log $ npm install -npm ERR! 404 Not Found npm ERR! 404 npm ERR! 404 'types/mocha' is not in the np ...
- constexpr函数------c++ primer
constexpr函数是指能用于常量表达式的函数.定义constexpr函数的方法有其他函数类似,不过要遵循几项约定:函数的返回值类型及所以形参的类型都是字面值类型,而且函数体中必须有且只有一条ret ...
- Setter
这个还是比较好理解的. 设置器. 用法还是比较简单的. 语法特征: 设置属性[Property] 填充值[Value] 注意这个是封闭单行闭合标签,可以换行,但只允许在同一个标签闭合. 事例用法: & ...
- C# 根据论文 像素差异算法【个人实验还是比较好使的】
论文地址:http://www.docin.com/p-1081596986.html 具体代码: 我转YUV,再通过上面的论文的方式比较近. YVU 介绍:https://blog.csdn.net ...
- mysql事务隔离级别回顾
事务隔离级别是针对读数据库数据的一种规则.事务隔离级别是数据库属性不是事务属性. 1.读未提交(read uncommited) 可以读到其他事务修改未提交的数据.(有 脏读,不可重复读,幻读) 事务 ...
- ios app提交之前需要哪几个证书
1.遇到的问题 一款App在别人的机器上开发和发布,现在迭代更新和开发需要在一台新mac机上开发和发布. (使用同一个开发者账号)问题: 1.在新mac机器上开发并导入真机测试,是不是需要从别人的机器 ...
- (原创)数据结构之利用KMP算法解决串的模式匹配问题
给定一个主串S(长度<=10^6)和一个模式T(长度<=10^5),要求在主串S中找出与模式T相匹配的子串,返回相匹配的子串中的第一个字符在主串S中出现的位置. 输入格式: 输入有两行 ...
- luoguP3690 列队
https://www.luogu.org/problemnew/show/P3960 作为一个初二蒟蒻要考提高组,先做一下17年的题目 我们发现进行一次操作相当于 把第 x 行的第 y 个弹出记为 ...
- 了解一个名词——GTD
概念:就是Getting Things Done的缩写,翻译过来就是“把事情做完”,是一个管理时间的方法. 核心理念概括:就是必须记录下来要做的事,然后整理安排并使自己一一去执行. 五个核心原则是:收 ...
- ubuntu 18.04 通过联网方式安装wine
ubuntu 18.04 通过联网方式安装wine 1.如果是64位机器,先开启允许32位架构程序运行 sudo dpkg --add-architecture i386 2.添加元wine源码安装仓 ...