http://radford.edu/~nokie/classes/360/dp-opt-bst.html

Overview


Optimal Binary Search Trees - Problem

    • Problem:
      • Sorted set of keys k1,k2,...,knk1,k2,...,kn
      • Key probabilities: p1,p2,...,pnp1,p2,...,pn
      • What tree structure has lowest expected cost?
      • Cost of searching for node ii

        : cost(ki)=depth(ki)+1cost(ki)=depth(ki)+1

Expected Cost of tree =∑i=1ncost(ki)pi=∑i=1n(depth(ki)+1)pi=∑i=1ndepth(ki)pi+∑i=1npi=(∑i=1ndepth(ki)pi)+1Expected Cost of tree =∑i=1ncost(ki)pi=∑i=1n(depth(ki)+1)pi=∑i=1ndepth(ki)pi+∑i=1npi=(∑i=1ndepth(ki)pi)+1


Optimal BST - Example

    • Example:
      • Probability table (pipi

        is the probabilty of key kiki

        :

ii

1 2 3 4 5
kiki

k1k1

k2k2

k3k3

k4k4

k5k5

pipi

0.25 0.20 0.05 0.20 0.30

        Two BSTs

      • Given: k1<k2<k3<k4<k5k1<k2<k3<k4<k5
      • Tree 1:
        • k2/[k1,k4]/[nil,nil],[k3,k5]k2/[k1,k4]/[nil,nil],[k3,k5]
        • cost = 0(0.20) + 1(0.25+0.20) +2(0.05+0.30) + 1 = 1.15 + 1
      • Tree 2:
        • k2/[k1,k5]/[nil,nil],[k4,nil]/[nil,nil],[nil,nil],[k3,nil],[nil,nil]k2/[k1,k5]/[nil,nil],[k4,nil]/[nil,nil],[nil,nil],[k3,nil],[nil,nil]
        • cost = 0(0.20) + 1(0.25+0.30) +2(0.20) + 3(0.05) + 1 = 1.10 + 1
  • Notice that a deeper tree has expected lower cost


Optimal BST - DP Approach

    • Optimal BST TT

      must have subtree T′T′

      for keys ki…kjki…kj

      which is optimal for those keys

      • Cut and paste proof: if T′T′

        not optimal, improving it will improve TT

        , a contradiction

    • Algorithm for finding optimal tree for sorted, distinct keys ki…kjki…kj

      :

      • For each possible root krkr

        for i≤r≤ji≤r≤j

      • Make optimal subtree for ki,…,kr−1ki,…,kr−1
      • Make optimal subtree for kr+1,…,kjkr+1,…,kj
      • Select root that gives best total tree
    • Formula: e(i,j)e(i,j)

      = expected number of comparisons for optimal tree for keys ki…kjki…kj

e(i,j)={0, if i=j+1mini≤r≤j{e(i,r−1)+e(r+1,j)+w(i,j)}, if i≤je(i,j)={0, if i=j+1mini≤r≤j{e(i,r−1)+e(r+1,j)+w(i,j)}, if i≤j

  • where w(i,j)=∑k=ijpiw(i,j)=∑k=ijpi

    is the increase in cost if ki…kjki…kj

    is a subtree of a node

  • Work bottom up and remember solution


Optimal BST - Algorithm and Performance

    • Brute Force: try all tree configurations
      • Ω(4n / n3/2) different BSTs with n nodes
    • DP: bottom up with table: for all possible contiguous sequences of keys and all possible roots, compute optimal subtrees
    for size in 1 .. n loop             -- All sizes of sequences
for i in 1 .. n-size+1 loop -- All starting points of sequences
j := i + size - 1
e(i, j) := float'max;
for r in i .. j loop -- All roots of sequence ki .. kj
t := e(i, r-1) + e(r+1, j) + w(i, j)
if t < e(i, j) then
e(i, j) := t
root(i, j) := r
end if
end loop
end loop
end loop
    • Θ(n3)
    • Can, of course, also use (memoized) recursion

http://www.geeksforgeeks.org/dynamic-programming-set-24-optimal-binary-search-tree/

Dynamic Programming | Set 24 (Optimal Binary Search Tree)

Given a sorted array keys[0.. n-1] of search keys and an array freq[0.. n-1] of frequency counts, where freq[i] is the number of searches to keys[i]. Construct a binary search tree of all keys such that the total cost of all the searches is as small as possible.

Let us first define the cost of a BST. The cost of a BST node is level of that node multiplied by its frequency. Level of root is 1.

Example 1
Input: keys[] = {10, 12}, freq[] = {34, 50}
There can be following two possible BSTs
10 12
\ /
12 10
I II
Frequency of searches of 10 and 12 are 34 and 50 respectively.
The cost of tree I is 34*1 + 50*2 = 134
The cost of tree II is 50*1 + 34*2 = 118 Example 2
Input: keys[] = {10, 12, 20}, freq[] = {34, 8, 50}
There can be following possible BSTs
10 12 20 10 20
\ / \ / \ /
12 10 20 12 20 10
\ / / \
20 10 12 12
I II III IV V
Among all possible BSTs, cost of the fifth BST is minimum.
Cost of the fifth BST is 1*50 + 2*34 + 3*8 = 142

1) Optimal Substructure:
The optimal cost for freq[i..j] can be recursively calculated using following formula.

We need to calculate optCost(0, n-1) to find the result.

The idea of above formula is simple, we one by one try all nodes as root (r varies from i to j in second term). When we make rth node as root, we recursively calculate optimal cost from i to r-1 and r+1 to j.
We add sum of frequencies from i to j (see first term in the above formula), this is added because every search will go through root and one comparison will be done for every search.

2) Overlapping Subproblems
Following is recursive implementation that simply follows the recursive structure mentioned above.

// A naive recursive implementation of optimal binary search tree problem
#include <stdio.h>
#include <limits.h> // A utility function to get sum of array elements freq[i] to freq[j]
int sum(int freq[], int i, int j); // A recursive function to calculate cost of optimal binary search tree
int optCost(int freq[], int i, int j)
{
// Base cases
if (j < i) // If there are no elements in this subarray
return 0;
if (j == i) // If there is one element in this subarray
return freq[i]; // Get sum of freq[i], freq[i+1], ... freq[j]
int fsum = sum(freq, i, j); // Initialize minimum value
int min = INT_MAX; // One by one consider all elements as root and recursively find cost
// of the BST, compare the cost with min and update min if needed
for (int r = i; r <= j; ++r)
{
int cost = optCost(freq, i, r-1) + optCost(freq, r+1, j);
if (cost < min)
min = cost;
} // Return minimum value
return min + fsum;
} // The main function that calculates minimum cost of a Binary Search Tree.
// It mainly uses optCost() to find the optimal cost.
int optimalSearchTree(int keys[], int freq[], int n)
{
// Here array keys[] is assumed to be sorted in increasing order.
// If keys[] is not sorted, then add code to sort keys, and rearrange
// freq[] accordingly.
return optCost(freq, 0, n-1);
} // A utility function to get sum of array elements freq[i] to freq[j]
int sum(int freq[], int i, int j)
{
int s = 0;
for (int k = i; k <=j; k++)
s += freq[k];
return s;
} // Driver program to test above functions
int main()
{
int keys[] = {10, 12, 20};
int freq[] = {34, 8, 50};
int n = sizeof(keys)/sizeof(keys[0]);
printf("Cost of Optimal BST is %d ", optimalSearchTree(keys, freq, n));
return 0;
}

Output:

Cost of Optimal BST is 142

Time complexity of the above naive recursive approach is exponential. It should be noted that the above function computes the same subproblems again and again. We can see many subproblems being repeated in the following recursion tree for freq[1..4].

Since same suproblems are called again, this problem has Overlapping Subprolems property. So optimal BST problem has both properties (see thisand this) of a dynamic programming problem. Like other typical Dynamic Programming(DP) problems, recomputations of same subproblems can be avoided by constructing a temporary array cost[][] in bottom up manner.

Dynamic Programming Solution
Following is C/C++ implementation for optimal BST problem using Dynamic Programming. We use an auxiliary array cost[n][n] to store the solutions of subproblems. cost[0][n-1] will hold the final result. The challenge in implementation is, all diagonal values must be filled first, then the values which lie on the line just above the diagonal. In other words, we must first fill all cost[i][i] values, then all cost[i][i+1] values, then all cost[i][i+2] values. So how to fill the 2D array in such manner> The idea used in the implementation is same as Matrix Chain Multiplication problem, we use a variable ‘L’ for chain length and increment ‘L’, one by one. We calculate column number ‘j’ using the values of ‘i’ and ‘L’.

// Dynamic Programming code for Optimal Binary Search Tree Problem
#include <stdio.h>
#include <limits.h> // A utility function to get sum of array elements freq[i] to freq[j]
int sum(int freq[], int i, int j); /* A Dynamic Programming based function that calculates minimum cost of
a Binary Search Tree. */
int optimalSearchTree(int keys[], int freq[], int n)
{
/* Create an auxiliary 2D matrix to store results of subproblems */
int cost[n][n]; /* cost[i][j] = Optimal cost of binary search tree that can be
formed from keys[i] to keys[j].
cost[0][n-1] will store the resultant cost */ // For a single key, cost is equal to frequency of the key
for (int i = 0; i < n; i++)
cost[i][i] = freq[i]; // Now we need to consider chains of length 2, 3, ... .
// L is chain length.
for (int L=2; L<=n; L++)
{
// i is row number in cost[][]
for (int i=0; i<=n-L+1; i++)
{
// Get column number j from row number i and chain length L
int j = i+L-1;
cost[i][j] = INT_MAX; // Try making all keys in interval keys[i..j] as root
for (int r=i; r<=j; r++)
{
// c = cost when keys[r] becomes root of this subtree
int c = ((r > i)? cost[i][r-1]:0) +
((r < j)? cost[r+1][j]:0) +
sum(freq, i, j);
if (c < cost[i][j])
cost[i][j] = c;
}
}
}
return cost[0][n-1];
} // A utility function to get sum of array elements freq[i] to freq[j]
int sum(int freq[], int i, int j)
{
int s = 0;
for (int k = i; k <=j; k++)
s += freq[k];
return s;
} // Driver program to test above functions
int main()
{
int keys[] = {10, 12, 20};
int freq[] = {34, 8, 50};
int n = sizeof(keys)/sizeof(keys[0]);
printf("Cost of Optimal BST is %d ", optimalSearchTree(keys, freq, n));
return 0;
}

Output:

Cost of Optimal BST is 142

Notes
1) The time complexity of the above solution is O(n^4). The time complexity can be easily reduced to O(n^3) by pre-calculating sum of frequencies instead of calling sum() again and again.

2) In the above solutions, we have computed optimal cost only. The solutions can be easily modified to store the structure of BSTs also. We can create another auxiliary array of size n to store the structure of tree. All we need to do is, store the chosen ‘r’ in the innermost loop.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

DP Intro - OBST的更多相关文章

  1. DP Intro - poj 2342 Anniversary party

    今天开始做老师给的专辑,打开DP专辑 A题 Rebuilding Roads 直接不会了,发现是树形DP,百度了下了该题,看了老半天看不懂,想死的冲动都有了~~~~ 最后百度了下,树形DP入门,找到了 ...

  2. DP Intro - poj 1947 Rebuilding Roads

    算法: dp[i][j]表示以i为根的子树要变成有j个节点的状态需要减掉的边数. 考虑状态转移的时候不考虑i的父亲节点,就当不存在.最后统计最少减去边数的 时候+1. 考虑一个节点时,有两种选择,要么 ...

  3. DP Intro - poj 1947 Rebuilding Roads(树形DP)

    版权声明:本文为博主原创文章,未经博主允许不得转载. Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  4. DP Intro - Tree DP Examples

    因为上次比赛sb地把一道树形dp当费用流做了,受了点刺激,用一天时间稍微搞一下树形DP,今后再好好搞一下) 基于背包原理的树形DP poj 1947 Rebuilding Roads 题意:给你一棵树 ...

  5. DP Intro - Tree POJ2342 Anniversary party

    POJ 2342 Anniversary party (树形dp 入门题) Anniversary party Time Limit: 1000MS   Memory Limit: 65536K To ...

  6. DP Intro - Tree DP

    二叉苹果树 题目 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点 ...

  7. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  8. 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...

  9. AEAI DP V3.7.0 发布,开源综合应用开发平台

    1  升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...

随机推荐

  1. jQuery 选择器2

    jQuery 选择器 选择器 实例 选取 * $("*") 所有元素 #id $("#lastname") id="lastname" 的元 ...

  2. 希尔伯特空间(Hilbert Space)是什么?

    希尔伯特空间是老希在解决无穷维线性方程组时提出的概念, 原来的线性代数理论都是基于有限维欧几里得空间的, 无法适用, 这迫使老希去思考无穷维欧几里得空间, 也就是无穷序列空间的性质. 大家知道, 在一 ...

  3. 编写高质量代码改善C#程序的157个建议——建议22:确保集合的线程安全

    建议22:确保集合的线程安全 集合线程安全是指多个线程上添加或删除元素时,线程键必须保持同步. 下面代码模拟了一个线程在迭代过程中,另一个线程对元素进行了删除. class Program { sta ...

  4. 编写高质量代码改善C#程序的157个建议——建议8: 避免给枚举类型的元素提供显式的值

    建议8: 避免给枚举类型的元素提供显式的值 一般情况下,没有必要给枚举类型的元素提供显式的值.创建枚举的理由之一,就是为了代替使用实际的数值.不正确地为枚举类型的元素设定显式的值,会带来意想不到的错误 ...

  5. 使用java实现单链表----(java中的引用就是指针)

    //一直以为java中没有指针,其实java的引用就是指针,只不过堆栈中的引用储存了在堆中的地址,可以看做java中的指针.public class sibgleLink<E> { // ...

  6. NET上传大文件出现网页无法显示的问题 默认的上传文件大小是4M

    需要在配置文件处进行修改 web.config中的<system.web></system.web>内加入如下代码: <httpRuntime executionTime ...

  7. [转]B+Tree图解

    一,    M阶B+树的定义(M阶是指一个节点最多能拥有的孩子数,M>2): 图1.1 3阶B+树 (1)根结点只有1个,分支数量范围[2,m]. (2)除根以外的非叶子结点,每个结点包含分支数 ...

  8. c#设计模式之:组合模式(Composite)

    一:引言 在软件开发过程中,我们经常会遇到处理简单对象和复合对象的情况,例如对操作系统中目录的处理,因为目录客园包括单独的文件,也可以包括文件夹,文件夹又是由文件组成的,由于简单对象和复合对象在功能上 ...

  9. X的平方根(二分)

    设计函数int sqrt(int x),计算 xx 的平方根. 输入格式 输入一个 整数 xx,输出它的平方根.直到碰到文件结束符(EOF)为止. 输出格式 对于每组输入,输出一行一个整数,表示输入整 ...

  10. MVC进阶篇(一)——概览

    前言 说到MVC,就得先说说框架是什么东西,MVC好多人都知道,是Model.view.controller,但是MVC到底是什么样的一个框架呢,好多人又说了是约定大于配置.下面我来说说我的理解. 内 ...