1. HBase框架简单介绍

HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。HBase使用和 BigTable非常相同的数据模型。用户存储数据行在一个表里。一个数据行拥有一个可选择的键和任意数量的列,一个或多个列组成一个ColumnFamily,一个Fmaily下的列位于一个HFile中,易于缓存数据。表是疏松的存储的,因此用户可以给行定义各种不同的列。在HBase中数据按主键排序,同时表按主键划分为多个Region。

在分布式的生产环境中,HBase 需要运行在 HDFS 之上,以 HDFS 作为其基础的存储设施。HBase 上层提供了访问的数据的 Java API 层,供应用访问存储在 HBase 的数据。在 HBase 的集群中主要由 Master 和 Region Server 组成,以及 Zookeeper,具体模块如下图所示:

简单介绍一下 HBase 中相关模块的作用:

  • Master
    HBase Master用于协调多个Region Server,侦测各个RegionServer之间的状态,并平衡RegionServer之间的负载。HBaseMaster还有一个职责就是负责分配Region给RegionServer。HBase允许多个Master节点共存,但是这需要Zookeeper的帮助。不过当多个Master节点共存时,只有一个Master是提供服务的,其他的Master节点处于待命的状态。当正在工作的Master节点宕机时,其他的Master则会接管HBase的集群。
  • Region Server
    对于一个RegionServer而言,其包括了多个Region。RegionServer的作用只是管理表格,以及实现读写操作。Client直接连接RegionServer,并通信获取HBase中的数据。对于Region而言,则是真实存放HBase数据的地方,也就说Region是HBase可用性和分布式的基本单位。如果当一个表格很大,并由多个CF组成时,那么表的数据将存放在多个Region之间,并且在每个Region中会关联多个存储的单元(Store)。
  • Zookeeper
    对于 HBase 而言,Zookeeper的作用是至关重要的。首先Zookeeper是作为HBase Master的HA解决方案。也就是说,是Zookeeper保证了至少有一个HBase Master 处于运行状态。并且Zookeeper负责Region和Region Server的注册。其实Zookeeper发展到目前为止,已经成为了分布式大数据框架中容错性的标准框架。不光是HBase,几乎所有的分布式大数据相关的开源框架,都依赖于Zookeeper实现HA。

2. Hbase数据模型

2.1 逻辑视图

基本概念:

  • RowKey:是Byte array,是表中每条记录的“主键”,方便快速查找,Rowkey的设计非常重要;
  • Column Family:列族,拥有一个名称(string),包含一个或者多个相关列;
  • Column:属于某一个columnfamily,familyName:columnName,每条记录可动态添加;
  • Version Number:类型为Long,默认值是系统时间戳,可由用户自定义;
  • Value(Cell):Byte array。

2.2 物理模型:

  • 每个column family存储在HDFS上的一个单独文件中,空值不会被保存。
  • Key 和 Version number在每个column family中均有一份;
  • HBase为每个值维护了多级索引,即:<key, columnfamily, columnname, timestamp>;
  • 表在行的方向上分割为多个Region;
  • Region是Hbase中分布式存储和负载均衡的最小单元,不同Region分布到不同RegionServer上。
  • Region按大小分割的,随着数据增多,Region不断增大,当增大到一个阀值的时候,Region就会分成两个新的Region;
  • Region虽然是分布式存储的最小单元,但并不是存储的最小单元。每个Region包含着多个Store对象。每个Store包含一个MemStore或若干StoreFile,StoreFile包含一个或多个HFile。MemStore存放在内存中,StoreFile存储在HDFS上。

疑问:每一个Region都只存储一个ColumnFamily的数据,并且是该CF中的一段(按Row的区间分成多个 Region)?这个需要查证,每个Region只包含一个ColumnFamily可以提高并行性?然而,我只知道每个Store只包含一个ColumnFamily的数据。

2.3 ROOT表和META表

HBase的所有Region元数据被存储在.META.表中,随着Region的增多,.META.表中的数据也会增大,并分裂成多个新的Region。为了定位.META.表中各个Region的位置,把.META.表中所有Region的元数据保存在-ROOT-表中,最后由Zookeeper记录-ROOT-表的位置信息。所有客户端访问用户数据前,需要首先访问Zookeeper获得-ROOT-的位置,然后访问-ROOT-表获得.META.表的位置,最后根据.META.表中的信息确定用户数据存放的位置,如下图所示。

-ROOT-表永远不会被分割,它只有一个Region,这样可以保证最多只需要三次跳转就可以定位任意一个Region。为了加快访问速度,.META.表的所有Region全部保存在内存中。客户端会将查询过的位置信息缓存起来,且缓存不会主动失效。如果客户端根据缓存信息还访问不到数据,则询问相关.META.表的Region服务器,试图获取数据的位置,如果还是失败,则询问-ROOT-表相关的.META.表在哪里。最后,如果前面的信息全部失效,则通过ZooKeeper重新定位Region的信息。所以如果客户端上的缓存全部是失效,则需要进行6次网络来回,才能定位到正确的Region。

一个完整分布式的HBase的组成示意图如下,后面我们再详细谈其工作原理。

3. 高可用

3.1 Write-Ahead-Log(WAL)保障数据高可用

我们理解下HLog的作用。HBase中的HLog机制是WAL的一种实现,而WAL(一般翻译为预写日志)是事务机制中常见的一致性的实现方式。每个RegionServer中都会有一个HLog的实例,RegionServer会将更新操作(如 Put,Delete)先记录到 WAL(也就是HLo)中,然后将其写入到Store的MemStore,最终MemStore会将数据写入到持久化的HFile中(MemStore 到达配置的内存阀值)。这样就保证了HBase的写的可靠性。如果没有 WAL,当RegionServer宕掉的时候,MemStore 还没有写入到HFile,或者StoreFile还没有保存,数据就会丢失。或许有的读者会担心HFile本身会不会丢失,这是由 HDFS 来保证的。在HDFS中的数据默认会有3份。因此这里并不考虑 HFile 本身的可靠性。

HFile由很多个数据块(Block)组成,并且有一个固定的结尾块。其中的数据块是由一个Header和多个Key-Value的键值对组成。在结尾的数据块中包含了数据相关的索引信息,系统也是通过结尾的索引信息找到HFile中的数据。

3.2 组件高可用

  • Master容错:Zookeeper重新选择一个新的Master。如果无Master过程中,数据读取仍照常进行,但是,region切分、负载均衡等无法进行;
  • RegionServer容错:定时向Zookeeper汇报心跳,如果一旦时间内未出现心跳,Master将该RegionServer上的Region重新分配到其他RegionServer上,失效服务器上“预写”日志由主服务器进行分割并派送给新的RegionServer;
  • Zookeeper容错:Zookeeper是一个可靠地服务,一般配置3或5个Zookeeper实例。

4. HBase读写流程

上图是RegionServer数据存储关系图。上文提到,HBase使用MemStore和StoreFile存储对表的更新。数据在更新时首先写入HLog和MemStore。MemStore中的数据是排序的,当MemStore累计到一定阈值时,就会创建一个新的MemStore,并且将老的MemStore添加到Flush队列,由单独的线程Flush到磁盘上,成为一个StoreFile。与此同时,系统会在Zookeeper中记录一个CheckPoint,表示这个时刻之前的数据变更已经持久化了。当系统出现意外时,可能导致MemStore中的数据丢失,此时使用HLog来恢复CheckPoint之后的数据。
StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更新其实是不断追加的操作。当一个Store中的StoreFile达到一定阈值后,就会进行一次合并操作,将对同一个key的修改合并到一起,形成一个大的StoreFile。当StoreFile的大小达到一定阈值后,又会对 StoreFile进行切分操作,等分为两个StoreFile。

4.1 写操作流程

  • (1) Client通过Zookeeper的调度,向RegionServer发出写数据请求,在Region中写数据。
  • (2) 数据被写入Region的MemStore,直到MemStore达到预设阈值。
  • (3) MemStore中的数据被Flush成一个StoreFile。
  • (4) 随着StoreFile文件的不断增多,当其数量增长到一定阈值后,触发Compact合并操作,将多个StoreFile合并成一个StoreFile,同时进行版本合并和数据删除。
  • (5) StoreFiles通过不断的Compact合并操作,逐步形成越来越大的StoreFile。
  • (6) 单个StoreFile大小超过一定阈值后,触发Split操作,把当前Region Split成2个新的Region。父Region会下线,新Split出的2个子Region会被HMaster分配到相应的RegionServer上,使得原先1个Region的压力得以分流到2个Region上。

可以看出HBase只有增添数据,所有的更新和删除操作都是在后续的Compact历程中举行的,使得用户的写操作只要进入内存就可以立刻返回,实现了HBase I/O的高机能。

4.2 读操作流程

  • (1) Client访问Zookeeper,查找-ROOT-表,获取.META.表信息。
  • (2) 从.META.表查找,获取存放目标数据的Region信息,从而找到对应的RegionServer。
  • (3) 通过RegionServer获取需要查找的数据。
  • (4) Regionserver的内存分为MemStore和BlockCache两部分,MemStore主要用于写数据,BlockCache主要用于读数据。读请求先到MemStore中查数据,查不到就到BlockCache中查,再查不到就会到StoreFile上读,并把读的结果放入BlockCache。

寻址过程:client-->Zookeeper-->-ROOT-表-->.META.表-->RegionServer-->Region-->client

其它相关内容待补充

Hadoop相关知识整理系列之一:HBase基本架构及原理的更多相关文章

  1. 机器学习相关知识整理系列之一:决策树算法原理及剪枝(ID3,C4.5,CART)

    决策树是一种基本的分类与回归方法.分类决策树是一种描述对实例进行分类的树形结构,决策树由结点和有向边组成.结点由两种类型,内部结点表示一个特征或属性,叶结点表示一个类. 1. 基础知识 熵 在信息学和 ...

  2. 机器学习相关知识整理系列之三:Boosting算法原理,GBDT&XGBoost

    1. Boosting算法基本思路 提升方法思路:对于一个复杂的问题,将多个专家的判断进行适当的综合所得出的判断,要比任何一个专家单独判断好.每一步产生一个弱预测模型(如决策树),并加权累加到总模型中 ...

  3. 机器学习相关知识整理系列之二:Bagging及随机森林

    1. Bagging的策略 从样本集中重采样(有放回)选出\(n\)个样本,定义子样本集为\(D\): 基于子样本集\(D\),所有属性上建立分类器,(ID3,C4.5,CART,SVM等): 重复以 ...

  4. Redis相关知识整理

    Redis相关知识整理 1. Redis和MySQL的区别?a).mysql是关系型数据库,而redis是NOSQL,非关系型数据库.mysql将数据持久化到硬盘,读取数据慢,而redis数据先存储在 ...

  5. podSpec文件相关知识整理

    上一篇文章整理了我用SVN创建私有库的过程,本文将整理一下有关podSpec文件的相关知识. podSpec中spec的全称是“Specification”,说明书的意思.顾名思义,这是用来描述你这个 ...

  6. OpenCV&Qt学习之四——OpenCV 实现人脸检测与相关知识整理

    开发配置 OpenCV的例程中已经带有了人脸检测的例程,位置在:OpenCV\samples\facedetect.cpp文件,OpenCV的安装与这个例子的测试可以参考我之前的博文Linux 下编译 ...

  7. [Cxf] cxf 相关知识整理

    ① 请求方式为GET @GET @Path(value = "/userAddressManage") @Produces( { MediaType.APPLICATION_JSO ...

  8. Web缓存相关知识整理

    一.前言  工作上遇到一个这样的需求,一个H5页面在APP端,如果勾选已读状态,则下次打开该链接,会跳过此页面.用到了HTML5 的本地存储 API 中的 localStorage作为解决方案,回顾了 ...

  9. JVM的相关知识整理和学习--(转载)

    JVM是虚拟机,也是一种规范,他遵循着冯·诺依曼体系结构的设计原理.冯·诺依曼体系结构中,指出计算机处理的数据和指令都是二进制数,采用存储程序方式不加区分的存储在同一个存储器里,并且顺序执行,指令由操 ...

随机推荐

  1. jQuery CSS 操作函数

    CSS 属性 描述 css() 设置或返回匹配元素的样式属性. height() 设置或返回匹配元素的高度. offset() 返回第一个匹配元素相对于文档的位置. offsetParent() 返回 ...

  2. ASP.NET管道技术

    Asp.net mvc是基于dnf(.net framework )实现了代码分离的开源框架.ASP.NET MVC框架拥有极强的定制以及扩展的特性.本文梳理了ASP.NET MVC的管道(pipel ...

  3. log4j分级别打印和如何配置多个Logger

    log4j.rootLogger=dubug,info,warn,error 最关键的是log4j.appender.[level].threshold=[level]   这个是日志分级别打印的最关 ...

  4. 《从零开始学Swift》学习笔记(Day 11)——数据类型那些事儿?

    原创文章,欢迎转载.转载请注明:关东升的博客        在我们学习语言时都会学到这种语言的数据类型,在Swift中数据类型有那些呢?整型.浮点型.布尔型.字符.字符串这些类型是一定有的,其中集合. ...

  5. 坑爹的 HTTPClient java.lang.NoSuchFieldError: INSTANCE

    项目中需要用到httpclient ,maven配置如下 <dependency> <groupId>org.apache.httpcomponents</groupId ...

  6. make tree install 目录树状结构工具安装

    http://futeng.iteye.com/blog/2071867 http://zhou123.blog.51cto.com/4355617/1196415 wget ftp://mama.i ...

  7. CSS3 Flex布局(项目)

    一.order属性 order属性定义项目的排列顺序.数值越小,排列越靠前,默认为0. 二.flex-grow属性 flex-grow属性定义项目的放大比例,默认为0,即如果存在剩余空间,也不放大. ...

  8. 一个jsp页面引入另一个jsp页面的三种方式 及静态引入和动态引入的区别

    转载下, 转载自:http://blog.csdn.net/fn_2015/article/details/70311495 1.第一种:jstl  import <c:import url=& ...

  9. 设计线程安全的类 VS 发布线程安全的对象

    一.设计线程安全的类 步骤: 找出构成对象状态的所有变量 找出约束状态变量的不变性条件 建立对象状态的并发访问策略 1.在现有的线程安全类中添加功能 (1)重用能减低工作量和提高正确性 (2)如果底层 ...

  10. Ubuntu部署jmeter

    一:ubuntu部署jdk 1:先下载jdk-8u74-linux-x64.tar.gz,上传到服务器,这里上传文件用到了ubuntu 下的 lrzsz. ubuntu下直接执行 sudo apt-g ...