Distinct powers (Project Euler 29 加强版)
题目大意:
$2<=a,b<=n$ 求 $a^b$能表示多少不同的正整数。
原题中n=100,可以直接暴力求解,常见的两种解法是写高精度或者取对数判断相等。 直觉告诉我应该有更加优秀的解法,于是翻了下discuss,找到了一种复杂度介于O(n)和O(nlognlogn)的解法,拿出来分享一下。
首先来看一个性质:
对于一个$a$,可以找到最小的$a_0$,使得$a=a_0^k$.
比如$8^4=4^6=2^{12}$ 都是等价的。
对于某个$a^b = (a_0^k)^{b}$, 它只可能和某些$a_0^{b_1}$,$(a_0^2)^{b_2}$,$(a_0^3)^{b_3}\ \cdots\ (a_0^{k-1})^{b_{k-1}}$ 等价。
我们来看 $a_0^i\ \ (1<=i<k)$ 与 $a_0^k$ 所能表示的那些数会重复。
显然$a_0^{lcm(i,k)}$ $a_0^{2*lcm(i,k)}$ $a_0^{3*lcm(i,k)\ \cdots}$这些都是可以同时被$a_0^i\ \ (1<=i<k)$ 与 $a_0^k$ 表示的。
对应到$a_0^k$的指数分别是 $\frac{lcm(i,k)}{k}$ $2*\frac{lcm(i,k)}{k}$ $3*\frac{lcm(i,k)}{k}\ \cdots$ 把这些指数用一个bool数组标记,最后就可以得到以$a_0^k$为基能表示多少个数。 而且这个值和$a_0$的值无关,只和k有关,记为cnt[k],所以可以预处理。
最后统计答案。 枚举$a_0(不能表示成另外一个数的幂的数)$把$a_0\ a_0^2\ a_0^3\ \cdots a_0^k$ 一起考虑,对答案的贡献就是cnt[1]+cnt[2]+...cnt[k].
具体实现看代码: 实测n=100w 本地运行只要0.2s左右。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std; typedef long long ll;
#define N 1000001
#define M 21 ll cnt[N];
bool flag[N];
bool vis[M][N]; int gcd(int x,int y)
{
int tmp;
while (y)
{
tmp=x%y;
x=y; y=tmp;
}
return x;
} int lcm(int x,int y){return 1ll*x*y/gcd(x,y);} int main()
{
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout); int n,m=; scanf("%d",&n);
for (int i=;i<=n;i<<=,m++); m--; for (int i=;i<=m;i++)
{
for (int j=;j<i;j++)
{
int l=lcm(i,j),len1=l/j,len2=l/i;
for (int k=;k*len1<=n;k++) vis[i][k*len2]=true;
}
}
cnt[]=n-;
for (int i=;i<=m;i++)
{
cnt[i]=cnt[i-];
for (int j=;j<=n;j++) if (!vis[i][j]) cnt[i]++;
} ll ans=;
for (int i=;i<=n;i++)
{
if (flag[i]) continue;
int p=; ll x=i;
do
{
flag[x]=true;
p++; x*=i;
}while (x<=n);
ans+=cnt[p];
}
cout<<ans<<endl;
return ;
}
Distinct powers (Project Euler 29 加强版)的更多相关文章
- Project Euler 29 Distinct powers( 大整数质因数分解做法 + 普通做法 )
题意: 考虑所有满足2 ≤ a ≤ 5和2 ≤ b ≤ 5的整数组合生成的幂ab: 22=4, 23=8, 24=16, 25=3232=9, 33=27, 34=81, 35=24342=16, 4 ...
- (Problem 29)Distinct powers
Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...
- Python练习题 042:Project Euler 014:最长的考拉兹序列
本题来自 Project Euler 第14题:https://projecteuler.net/problem=14 ''' Project Euler: Problem 14: Longest C ...
- Python练习题 039:Project Euler 011:网格中4个数字的最大乘积
本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...
- Python练习题 031:Project Euler 003:最大质因数
本题来自 Project Euler 第3题:https://projecteuler.net/problem=3 # Project Euler: Problem 3: Largest prime ...
- [project euler] program 4
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...
- Python练习题 029:Project Euler 001:3和5的倍数
开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...
- Project Euler 9
题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...
- Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...
随机推荐
- [ubuntu Setup] ubuntu 14.10 安装 JDK
from : http://www.cnblogs.com/plinx/archive/2013/06/01/3113106.html 1.到 Sun 的官网下载 http://www.oracle ...
- Docker实践1:Virtualbox安装Oracle Enterprise Linux R6 U5
先下载OracleLinux-R6-U5-Server-x86_64-dvd.iso文件,然后打开virtualbox 因为weblogic docker镜像都比较大,因此最好容量最好大一点,采用30 ...
- [转载]Oracle批量执行
FROM: http://www.cnblogs.com/wangyayun/p/4514411.html //批量添加20000条数据用时8秒. try { String url = "j ...
- Java基础——Statement与PrepareStatement
Statement Statement是Java运行数据库操作的一个重要方法.用于在已经建立数据库连接的基础上.向数据库发送要运行的SQL语句.Statement对象,用于运行不带參数的简单SQL语句 ...
- Centos硬件信息
1.物理cpu个数 #cat /proc/cpuinfo | grep "physical id" | sort | uniq | wc -l 2.每个物理cpu核数 #cat / ...
- Python 提取Twitter tweets中的元素(包括text, screen names, hashtags)
CODE: #!/usr/bin/python # -*- coding: utf-8 -*- ''' Created on 2014-7-1 @author: guaguastd @name: ex ...
- 《暗黑世界V1.6》服务器代码执行图
<暗黑世界V1.6>服务器代码执行图 (原文地址:http://www.9miao.com/forum.php?mod=viewthread&tid=44016&highl ...
- ubuntu挂载3T新硬盘并更换home分区
ubuntu添加一块新的硬盘,并更换home分区 1.将硬盘接入机箱,开机,查看是否现有的硬盘信息 从这里可以看出,共有两块硬盘,分别是sda和sdb 2.执行fdisk -l,确保我们要添加的就是s ...
- web报表工具FineReport常见的数据集报错错误代码和解释
在使用finereport制作报表.若预览错误发生.非常多朋友便手忙脚乱不知所措了,事实上没什么,仅仅要看懂报错代码和含义.能够非常快的排除错误,这里我就分享一下finereport的数据集报错错误代 ...
- WPF中Auto与*的差别
Auto 表示自己主动适应显示内容的宽度, 如自己主动适应文本的宽度,文本有多长,控件就显示多长. * 则表示按比例来分配宽度. <ColumnDefinition Width="3* ...