Distinct powers (Project Euler 29 加强版)
题目大意:
$2<=a,b<=n$ 求 $a^b$能表示多少不同的正整数。
原题中n=100,可以直接暴力求解,常见的两种解法是写高精度或者取对数判断相等。 直觉告诉我应该有更加优秀的解法,于是翻了下discuss,找到了一种复杂度介于O(n)和O(nlognlogn)的解法,拿出来分享一下。
首先来看一个性质:
对于一个$a$,可以找到最小的$a_0$,使得$a=a_0^k$.
比如$8^4=4^6=2^{12}$ 都是等价的。
对于某个$a^b = (a_0^k)^{b}$, 它只可能和某些$a_0^{b_1}$,$(a_0^2)^{b_2}$,$(a_0^3)^{b_3}\ \cdots\ (a_0^{k-1})^{b_{k-1}}$ 等价。
我们来看 $a_0^i\ \ (1<=i<k)$ 与 $a_0^k$ 所能表示的那些数会重复。
显然$a_0^{lcm(i,k)}$ $a_0^{2*lcm(i,k)}$ $a_0^{3*lcm(i,k)\ \cdots}$这些都是可以同时被$a_0^i\ \ (1<=i<k)$ 与 $a_0^k$ 表示的。
对应到$a_0^k$的指数分别是 $\frac{lcm(i,k)}{k}$ $2*\frac{lcm(i,k)}{k}$ $3*\frac{lcm(i,k)}{k}\ \cdots$ 把这些指数用一个bool数组标记,最后就可以得到以$a_0^k$为基能表示多少个数。 而且这个值和$a_0$的值无关,只和k有关,记为cnt[k],所以可以预处理。
最后统计答案。 枚举$a_0(不能表示成另外一个数的幂的数)$把$a_0\ a_0^2\ a_0^3\ \cdots a_0^k$ 一起考虑,对答案的贡献就是cnt[1]+cnt[2]+...cnt[k].
具体实现看代码: 实测n=100w 本地运行只要0.2s左右。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std; typedef long long ll;
#define N 1000001
#define M 21 ll cnt[N];
bool flag[N];
bool vis[M][N]; int gcd(int x,int y)
{
int tmp;
while (y)
{
tmp=x%y;
x=y; y=tmp;
}
return x;
} int lcm(int x,int y){return 1ll*x*y/gcd(x,y);} int main()
{
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout); int n,m=; scanf("%d",&n);
for (int i=;i<=n;i<<=,m++); m--; for (int i=;i<=m;i++)
{
for (int j=;j<i;j++)
{
int l=lcm(i,j),len1=l/j,len2=l/i;
for (int k=;k*len1<=n;k++) vis[i][k*len2]=true;
}
}
cnt[]=n-;
for (int i=;i<=m;i++)
{
cnt[i]=cnt[i-];
for (int j=;j<=n;j++) if (!vis[i][j]) cnt[i]++;
} ll ans=;
for (int i=;i<=n;i++)
{
if (flag[i]) continue;
int p=; ll x=i;
do
{
flag[x]=true;
p++; x*=i;
}while (x<=n);
ans+=cnt[p];
}
cout<<ans<<endl;
return ;
}
Distinct powers (Project Euler 29 加强版)的更多相关文章
- Project Euler 29 Distinct powers( 大整数质因数分解做法 + 普通做法 )
题意: 考虑所有满足2 ≤ a ≤ 5和2 ≤ b ≤ 5的整数组合生成的幂ab: 22=4, 23=8, 24=16, 25=3232=9, 33=27, 34=81, 35=24342=16, 4 ...
- (Problem 29)Distinct powers
Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...
- Python练习题 042:Project Euler 014:最长的考拉兹序列
本题来自 Project Euler 第14题:https://projecteuler.net/problem=14 ''' Project Euler: Problem 14: Longest C ...
- Python练习题 039:Project Euler 011:网格中4个数字的最大乘积
本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...
- Python练习题 031:Project Euler 003:最大质因数
本题来自 Project Euler 第3题:https://projecteuler.net/problem=3 # Project Euler: Problem 3: Largest prime ...
- [project euler] program 4
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...
- Python练习题 029:Project Euler 001:3和5的倍数
开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...
- Project Euler 9
题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...
- Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...
随机推荐
- Session集中式管理
Asp.net Session集中式管理主要有StateServer(状态服务器).Sqlserver(数据库服务器).自定义(如Redis缓存服务器)等,本文主要介绍StateServe ...
- 【面试问题】—— 2019.3月前端面试之JS原理&CSS基础&Vue框架
前言:三月中旬面试了两家公司,一家小型公司只有面试,另一家稍大型公司笔试之后一面定夺.笔试部分属于基础类型,网上的复习资料都有. 面试时两位面试官都有考到一些实际工作中会用到,但我还没接触过的知识点. ...
- (转)Vue.use源码分析
我想有过vue开发经验的,对于vue.use并不陌生.当使用vue-resource或vue-router等全局组件时,必须通过Vue.use方法引入,才起作用.那么vue.use在组件引入之前到底做 ...
- jsp 页面图片为圆形
直接设置img标签的style属性即可 <img alt="" src="链接地址" style="width: 80px;height: 80 ...
- JSP--百度百科
JSP全名为Java Server Pages,中文名叫java服务器页面,其根本是一个简化的Servlet设计,它[1] 是由Sun Microsystems公司倡导.许多公司参与一起建立的一种动 ...
- scrollBy 相对滚动
scrollBy可以相对当前位置移动滚动条,而不是移动到绝对位置 scrollBy(0, 100); // 滚动条下移100px
- 【Python3 爬虫】03_urllib.error异常处理
urllib.error可以接受来自urllib.request产生的异常.urllib.error有两个方法:①URLError ②HTTPError URLError URLError产生的原因 ...
- java 学习帮助
java学习这一部分其实也算是今天的重点,这一部分用来回答很多群里的朋友所问过的问题,那就是我你是如何学习Java的,能不能给点建议?今 天我是打算来点干货,因此咱们就不说一些学习方法和技巧了,直接来 ...
- YII用户注冊和用户登录(五)之进行session和cookie分析 ,并在前后区分session和cookie
5 进行session和cookie分析 ,并在前后区分session和cookie: 记住登录状态 这样下次再登录站点的时候.就不用反复输入username和password. 是浏览器的cooki ...
- 关于继承Fragment后重写构造方法而产生的错误
在android开发中.写了一个关于继承Fragment的类时,假设有重载构造函数时.会提示"Avoid non-default constructors in fragments: use ...