$\newcommand{align}[1]{\begin{align*}#1\end{align*}}$题意:给出$f(x)=\prod\limits_{i=1}^n(a_ix+1)$和$g(x)=\prod\limits_{j=1}^m(b_jx+1)$的各项系数,求$h(x)=\prod\limits_{i=1}^n\prod\limits_{j=1}^m(a_ib_jx+1)$的前$k$项系数

乘积的形式不好处理,取个$\ln$就可以化为和的形式

$\align{\ln(a_ix+1)=\int\frac{a_i}{a_ix+1}\mathrm dx=\sum\limits_{k\geq1}\dfrac{(-1)^{k+1}}ka_i^kx^k}$

$\align{\ln(b_jx+1)=\sum\limits_{k\geq1}\dfrac{(-1)^{k+1}}kb_j^kx^k}$

$\align{\ln(a_ib_jx+1)=\sum\limits_{k\geq1}\dfrac{(-1)^{k+1}}ka_i^kb_j^kx^k}$

容易发现我们把前两个式子的系数做点积,再对$\forall k\geq1$把第$k$位乘上$(-1)^{-k+1}k$就得到了第三个式子的系数

所以我们把$\ln f(x)$和$\ln g(x)$的系数如此处理后就得到了$\ln h(x)$的系数,$\exp$回去即可

#include<stdio.h>
#include<string.h>
typedef long long ll;
const int mod=998244353,maxn=262144;
void swap(int&a,int&b){a^=b^=a^=b;}
int mul(int a,int b){return a*(ll)b%mod;}
int ad(int a,int b){return(a+b)%mod;}
int de(int a,int b){return(a-b)%mod;}
int pow(int a,int b){
	int s=1;
	while(b){
		if(b&1)s=mul(s,a);
		a=mul(a,a);
		b>>=1;
	}
	return s;
}
int rev[maxn],N,iN;
void pre(int n){
	int i,k;
	for(N=1,k=0;N<n;N<<=1)k++;
	for(i=0;i<N;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));
	iN=pow(N,mod-2);
}
void ntt(int*a,int on){
	int i,j,k,t,w,wn;
	for(i=0;i<N;i++){
		if(i<rev[i])swap(a[i],a[rev[i]]);
	}
	for(i=2;i<=N;i<<=1){
		wn=pow(3,on==1?(mod-1)/i:(mod-1-(mod-1)/i));
		for(j=0;j<N;j+=i){
			w=1;
			for(k=0;k<i>>1;k++){
				t=mul(w,a[i/2+j+k]);
				a[i/2+j+k]=de(a[j+k],t);
				a[j+k]=ad(a[j+k],t);
				w=mul(w,wn);
			}
		}
	}
	if(on==-1){
		for(i=0;i<N;i++)a[i]=mul(a[i],iN);
	}
}
int t0[maxn];
void getinv(int*a,int*b,int n){
	if(n==1){
		b[0]=pow(a[0],mod-2);
		return;
	}
	int i;
	getinv(a,b,n>>1);
	pre(n<<1);
	memset(t0,0,N<<2);
	memcpy(t0,a,n<<2);
	ntt(t0,1);
	ntt(b,1);
	for(i=0;i<N;i++)b[i]=mul(b[i],2-mul(b[i],t0[i]));
	ntt(b,-1);
	for(i=n;i<N;i++)b[i]=0;
}
int t1[maxn],inv[maxn];
void getln(int*a,int*b,int n){
	int i;
	memset(t1,0,n<<3);
	getinv(a,t1,n);
	for(i=1;i<n;i++)b[i-1]=mul(i,a[i]);
	ntt(b,1);
	ntt(t1,1);
	for(i=0;i<N;i++)b[i]=mul(b[i],t1[i]);
	ntt(b,-1);
	for(i=n-1;i>0;i--)b[i]=mul(b[i-1],inv[i]);
	b[0]=0;
	for(i=n;i<N;i++)b[i]=0;
}
int t2[maxn];
void exp(int*a,int*b,int n){
	if(n==1){
		b[0]=1;
		return;
	}
	int i;
	exp(a,b,n>>1);
	memset(t2,0,n<<3);
	getln(b,t2,n);
	for(i=0;i<n;i++)t2[i]=de(a[i],t2[i]);
	t2[0]++;
	ntt(b,1);
	ntt(t2,1);
	for(i=0;i<N;i++)b[i]=mul(b[i],t2[i]);
	ntt(b,-1);
	for(i=n;i<N;i++)b[i]=0;
}
int f[maxn],g[maxn],lf[maxn],lg[maxn],lh[maxn],h[maxn];
int main(){
	int N,n,m,k,i;
	scanf("%d%d%d",&n,&m,&k);
	for(i=0;i<=n;i++)scanf("%d",f+i);
	for(i=0;i<=m;i++)scanf("%d",g+i);
	for(N=1;N<n+1||N<m+1||N<k+1;N<<=1);
	inv[1]=1;
	for(i=2;i<N;i++)inv[i]=-mul(mod/i,inv[mod%i]);
	getln(f,lf,N);
	getln(g,lg,N);
	for(i=0;i<N;i++)lh[i]=mul(mul(lf[i],lg[i]),i&1?i:-i);
	exp(lh,h,N);
	for(i=0;i<k;i++)printf("%d ",ad(h[i],mod));
}

[xsy2978]Product of Roots的更多相关文章

  1. 【xsy2978】Product of Roots 生成函数+多项式ln+多项式exp

    题目大意:给你两个多项式$f(x)$和$g(x)$,满足$f(x)=\prod\limits_{i=1}^{n}(a_i+1)$,$g(x)=\prod\limits_{i=1}^{m}(b_i+1) ...

  2. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Peterhof

    A. City Wall 找规律. #include<stdio.h> #include<iostream> #include<string.h> #include ...

  3. gc roots 垃圾回收

    gc roots包括以下几个: 虚拟机栈(栈桢中的本地变量表)中的引用对象 方法区中的类静态属性引用的对象 方法区中的常量引用的对象 本地方法栈中JNI(即native方法)的引用的对象 java,c ...

  4. uva 11059 maximum product(水题)——yhx

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAB1QAAAMcCAIAAABo0QCJAAAgAElEQVR4nOydW7msuhKF2wIasIAHJK

  5. [LeetCode] Product of Array Except Self 除本身之外的数组之积

    Given an array of n integers where n > 1, nums, return an array output such that output[i] is equ ...

  6. [LeetCode] Maximum Product Subarray 求最大子数组乘积

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  7. vector - vector product

    the inner product Givens two vectors \(x,y\in \mathbb{R}^n\), the quantity \(x^\top y\), sometimes c ...

  8. 1 Maximum Product Subarray_Leetcode

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  9. Leetcode Maximum Product Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

随机推荐

  1. 微信小程序base64编码解码以及utf-8解码

    function base64_encode (str) { // 编码,配合encodeURIComponent使用 var c1, c2, c3; var base64EncodeChars = ...

  2. C语言的getopt

    By francis_hao    Jul 5,2017   getopt:分析命令行选项 概述 #include <unistd.h>int getopt(int argc, char ...

  3. shell里的getopts

    By francis_hao    Jul 5,2017   getopts是shell的一个内置命令. 概述 getopts optstring name [args]OPTIND,OPTARG,O ...

  4. 安卓topbar编码实战

    1.先在res->value下新建attrs.xml文件 <?xml version="1.0" encoding="utf-8"?> < ...

  5. HDU 1394 Minimum Inversion Number(树状数组/归并排序实现

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  6. bzoj 5099 [POI2018]Pionek 计算几何 极角排序

    [POI2018]Pionek Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 269  Solved: 80[Submit][Status][Disc ...

  7. docker compose,link,Odoo

    1.报错: /usr/bin/docker-current: Error response from daemon: driver failed programming external connec ...

  8. iOS 之持久化存储 plist、NSUserDefaults、NSKeyedArchiver、数据库

    1.什么是持久化? 本人找了好多文章都没有找到满意的答案,最后是从孙卫琴写的<精通Hibernate:Java对象持久化技术详解>中,看到如下的解释,感觉还是比较完整的.摘抄如下: 狭义的 ...

  9. MySql数据库学习总结(MySQL入门到精通)

    2017.1.24-2.3日(在大兴实验室) 1.数据库存储引擎: (1)MyISAM: 访问速度快,对事物完整性没要求,并以访问为主的适合这个 (2)InnoDB: 更占磁盘空间,需要进行频繁的更新 ...

  10. 网络流专题练习Day2

    04/17  目前做了:题 由于目前六道都是1A感觉非常爽... BZOJ1412: [ZJOI2009]狼和羊的故事 “狼爱上羊啊爱的疯狂,谁让他们真爱了一场:狼爱上羊啊并不荒唐,他们说有爱就有方向 ...