[xsy2978]Product of Roots
$\newcommand{align}[1]{\begin{align*}#1\end{align*}}$题意:给出$f(x)=\prod\limits_{i=1}^n(a_ix+1)$和$g(x)=\prod\limits_{j=1}^m(b_jx+1)$的各项系数,求$h(x)=\prod\limits_{i=1}^n\prod\limits_{j=1}^m(a_ib_jx+1)$的前$k$项系数
乘积的形式不好处理,取个$\ln$就可以化为和的形式
$\align{\ln(a_ix+1)=\int\frac{a_i}{a_ix+1}\mathrm dx=\sum\limits_{k\geq1}\dfrac{(-1)^{k+1}}ka_i^kx^k}$
$\align{\ln(b_jx+1)=\sum\limits_{k\geq1}\dfrac{(-1)^{k+1}}kb_j^kx^k}$
$\align{\ln(a_ib_jx+1)=\sum\limits_{k\geq1}\dfrac{(-1)^{k+1}}ka_i^kb_j^kx^k}$
容易发现我们把前两个式子的系数做点积,再对$\forall k\geq1$把第$k$位乘上$(-1)^{-k+1}k$就得到了第三个式子的系数
所以我们把$\ln f(x)$和$\ln g(x)$的系数如此处理后就得到了$\ln h(x)$的系数,$\exp$回去即可
#include<stdio.h> #include<string.h> typedef long long ll; const int mod=998244353,maxn=262144; void swap(int&a,int&b){a^=b^=a^=b;} int mul(int a,int b){return a*(ll)b%mod;} int ad(int a,int b){return(a+b)%mod;} int de(int a,int b){return(a-b)%mod;} int pow(int a,int b){ int s=1; while(b){ if(b&1)s=mul(s,a); a=mul(a,a); b>>=1; } return s; } int rev[maxn],N,iN; void pre(int n){ int i,k; for(N=1,k=0;N<n;N<<=1)k++; for(i=0;i<N;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1)); iN=pow(N,mod-2); } void ntt(int*a,int on){ int i,j,k,t,w,wn; for(i=0;i<N;i++){ if(i<rev[i])swap(a[i],a[rev[i]]); } for(i=2;i<=N;i<<=1){ wn=pow(3,on==1?(mod-1)/i:(mod-1-(mod-1)/i)); for(j=0;j<N;j+=i){ w=1; for(k=0;k<i>>1;k++){ t=mul(w,a[i/2+j+k]); a[i/2+j+k]=de(a[j+k],t); a[j+k]=ad(a[j+k],t); w=mul(w,wn); } } } if(on==-1){ for(i=0;i<N;i++)a[i]=mul(a[i],iN); } } int t0[maxn]; void getinv(int*a,int*b,int n){ if(n==1){ b[0]=pow(a[0],mod-2); return; } int i; getinv(a,b,n>>1); pre(n<<1); memset(t0,0,N<<2); memcpy(t0,a,n<<2); ntt(t0,1); ntt(b,1); for(i=0;i<N;i++)b[i]=mul(b[i],2-mul(b[i],t0[i])); ntt(b,-1); for(i=n;i<N;i++)b[i]=0; } int t1[maxn],inv[maxn]; void getln(int*a,int*b,int n){ int i; memset(t1,0,n<<3); getinv(a,t1,n); for(i=1;i<n;i++)b[i-1]=mul(i,a[i]); ntt(b,1); ntt(t1,1); for(i=0;i<N;i++)b[i]=mul(b[i],t1[i]); ntt(b,-1); for(i=n-1;i>0;i--)b[i]=mul(b[i-1],inv[i]); b[0]=0; for(i=n;i<N;i++)b[i]=0; } int t2[maxn]; void exp(int*a,int*b,int n){ if(n==1){ b[0]=1; return; } int i; exp(a,b,n>>1); memset(t2,0,n<<3); getln(b,t2,n); for(i=0;i<n;i++)t2[i]=de(a[i],t2[i]); t2[0]++; ntt(b,1); ntt(t2,1); for(i=0;i<N;i++)b[i]=mul(b[i],t2[i]); ntt(b,-1); for(i=n;i<N;i++)b[i]=0; } int f[maxn],g[maxn],lf[maxn],lg[maxn],lh[maxn],h[maxn]; int main(){ int N,n,m,k,i; scanf("%d%d%d",&n,&m,&k); for(i=0;i<=n;i++)scanf("%d",f+i); for(i=0;i<=m;i++)scanf("%d",g+i); for(N=1;N<n+1||N<m+1||N<k+1;N<<=1); inv[1]=1; for(i=2;i<N;i++)inv[i]=-mul(mod/i,inv[mod%i]); getln(f,lf,N); getln(g,lg,N); for(i=0;i<N;i++)lh[i]=mul(mul(lf[i],lg[i]),i&1?i:-i); exp(lh,h,N); for(i=0;i<k;i++)printf("%d ",ad(h[i],mod)); }
[xsy2978]Product of Roots的更多相关文章
- 【xsy2978】Product of Roots 生成函数+多项式ln+多项式exp
题目大意:给你两个多项式$f(x)$和$g(x)$,满足$f(x)=\prod\limits_{i=1}^{n}(a_i+1)$,$g(x)=\prod\limits_{i=1}^{m}(b_i+1) ...
- XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Peterhof
A. City Wall 找规律. #include<stdio.h> #include<iostream> #include<string.h> #include ...
- gc roots 垃圾回收
gc roots包括以下几个: 虚拟机栈(栈桢中的本地变量表)中的引用对象 方法区中的类静态属性引用的对象 方法区中的常量引用的对象 本地方法栈中JNI(即native方法)的引用的对象 java,c ...
- uva 11059 maximum product(水题)——yhx
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAB1QAAAMcCAIAAABo0QCJAAAgAElEQVR4nOydW7msuhKF2wIasIAHJK
- [LeetCode] Product of Array Except Self 除本身之外的数组之积
Given an array of n integers where n > 1, nums, return an array output such that output[i] is equ ...
- [LeetCode] Maximum Product Subarray 求最大子数组乘积
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- vector - vector product
the inner product Givens two vectors \(x,y\in \mathbb{R}^n\), the quantity \(x^\top y\), sometimes c ...
- 1 Maximum Product Subarray_Leetcode
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- Leetcode Maximum Product Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
随机推荐
- Codeforces 937.B Vile Grasshoppers
B. Vile Grasshoppers time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces Round #520 (Div. 2) A. A Prank
A. A Prank time limit per test 1 second memory limit per test 256 megabytes 题目链接:https://codefo ...
- codeforces 1077D
题目:https://codeforces.com/contest/1077/problem/D 题意:给你一个长度为n的串,你需要在里面找到出现次数最多的长度为k的子序列(子序列中元素可重复),求这 ...
- domReady的兼容性实现方法
一.为何要实现domReay方法? 举例: <!DOCTYPE html> <html lang="en"> <head> <meta c ...
- HTTP缓存原理
http的缓存分为强制缓存和对比缓存,两者的区别在于,强制缓存只要设置的时间不过期,就可以直接拿去用,而不用向服务器再一次发送请求.而对比缓存不管缓存是否有效,都需要向服务器发送请求. 其过程如下: ...
- DP---背包问题
http://www.hawstein.com/posts/dp-knapsack.html http://www.cnblogs.com/wwwjieo0/archive/2013/04/01/29 ...
- Python学习笔记 - day4 - 流程控制
Python流程控制 Python中的流程控制主要包含两部分:条件判断和循环. Python的缩进和语法 为什么要在这里说缩进和语法,是因为将要学习的条件判断和分支将会涉及到多行代码,在java.c等 ...
- Python学习笔记 使用数据库SQlite Mysql
SQLite是一种嵌入式数据库,它的数据库就是一个文件.由于SQLite本身是C写的,而且体积很小,所以,经常被集成到各种应用当中, 甚至在IOS和Android的APP中都可以集成 Python就内 ...
- 解决:org.apache.tomcat.jni.Error: 70023: This function has not been implemented on this platform
centos7.3 启动tomcat 出现错误: 八月 08, 2017 4:58:47 下午 org.apache.catalina.core.StandardEngine startInterna ...
- docker从零开始 存储(五)存储驱动介绍
关于存储驱动程序 要有效地使用存储驱动程序,了解Docker如何构建和存储镜像以及容器如何使用这些镜像非常重要.您可以使用此信息做出明智的选择,以确定从应用程序中保留数据的最佳方法,并避免在此过程中出 ...