Don't forget, a person's greatest emotional need is to feel appreciated.
Don't forget, a person's greatest emotional need is to feel appreciated.
莫忘记,人类情感上最大的需要是感恩。
Don't forget, a person's greatest emotional need is to feel appreciated.的更多相关文章
- English—句子
1. So far so good. 目前为止,一切都好. 2. Be my guest. 请便.别客气. 3. You're the boss. 听你的. 4.I've heard ...
- [UCSD白板题] Greatest Common Divisor
Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...
- don't forget the bigger picture
Imagine a circle that contains all of human knowledge: By the time you finish elementary school, you ...
- HDU 1423 Greatest Common Increasing Subsequence LCIS
题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- orale内置函数COALESCE和GREATEST和LEAST
1. COALESCE 返回该表达式列表的第一个非空value. 格式: COALESCE(value1, value2, value3, ...) 含义: 返回value列表第一个非空的值. val ...
- SDUT2157——Greatest Number(STL二分查找)
Greatest Number 题目描述Saya likes math, because she think math can make her cleverer.One day, Kudo invi ...
- No ongoing transaction. Did you forget to call multi?
2016-10-21 14:41:47,551 [ERROR] [http-nio-8032-exec-2] TransactionSynchronizationUtils:171 - Transac ...
- The Hundred Greatest Theorems
The Hundred Greatest Theorems The millenium seemed to spur a lot of people to compile "Top 100& ...
- POJ 2127 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://poj.org/problem?id=2127 Description You are given two sequences of integer numbers. Writ ...
随机推荐
- Android 简单适配器(SimpleAdapter)
1.介绍 2.简单适配器的实现方法 3.XML文件 (1)主页面布局 <?xml version="1.0" encoding="utf-8"?> ...
- CentOS 7 开放防火墙端口 命令(转载)
CentOS 7 开放防火墙端口 命令 最近公司新的server要求用CentOS7, 发现以前CentOS 6 系列中的 iptables 相关命令不能用了,查了下,发现Centos 7使用fire ...
- Android与MVC设计模式
写在前面,之前做过一段时间移动开发,后来因为工作原因搁浅了,最新重新拿起Android权威编程指南学习,顺道做个学习笔记. 首先呢,我想说无论是计算机科班出身还是培训班出身,都听说过高内聚低耦合以及M ...
- Fountains(非线段树版(主要是不太会用))
Arkady plays Gardenscapes a lot. Arkady wants to build two new fountains. There are n available foun ...
- HDU 6351 (带技巧的暴力)
题意:给定一个数,和一个最多交换次数k,问在不超过k次操作的情况,问可以得到的最大值和最小值是多少? 个人解题的艰辛路程 , 开始是想到了暴力枚举的可能 , 打出来发现在判断枚举的数组与原来数组交换了 ...
- BZOJ - 4066 KD树 范围计数 暴力重构
题意:单点更新,大矩阵(\(n*n,n≤10^5\))求和 二维的KD树能使最坏情况不高于\(O(N\sqrt{N})\) 核心在于query时判断当前子树维护的区间是否有交集/当前子节点是否在块中, ...
- HDU1501 简单DP
dp[i][j]:用A的前i的字符和B的前j个字符能否组成i+j长度的合法C串 O(n^2)的方法有点糟糕 /*H E A D*/ char str1[maxn],str2[maxn],str3[ma ...
- 通过 rundll32 创建设置注册表项权限
[Version]SIGNATURE="$Windows NT$" [DefaultInstall]AddReg=test.reg [test.reg]HKLM,"SOF ...
- DFS/BFS视频讲解
视频链接:https://www.bilibili.com/video/av12019553?share_medium=android&share_source=qq&bbid=XZ7 ...
- U盘安装CentOS 7错误 /dev/root does not exist, could not
问题: U盘安装CentOS 7,显示/dev/root does not exist, could not boot 解决方法: 1. 到windows里面查看U盘名称(例如 "Cento ...