caffe模型最终保存使用过的protobuf形式,将一个已经训练好的caffe模型读取出来,可以参考如下:

1,包含的头文件:

#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/text_format.h> #include "caffe/proto/caffe.pb.cc" //在caffe src/caffe、proto里面,是编译后自动生成的,其中包括(caffe.pb.cc caffe.pb.d caffe.pb.h caffe.pb.o.warnings.txt)

2,读取网络Message:

bool loadCaffeNet(const std::string& model_list, Message* proto){  //

	using google::protobuf::io::FileInputStream;
using google::protobuf::io::ZeroCopyInputStream;
using google::protobuf::io::CodedInputStream; //Message * proto;
std::vector<std::string> model_names;
boost::split(model_names, model_list, boost::is_any_of(",") );
bool success = false;
for (int i = 0; i < model_names.size(); ++i) {
std::cout<< "Finetuning from " << model_names[i];
const char* filename = model_names[i].c_str();
int fd = open(filename, O_RDONLY);
if( fd < 0 ){
std::cout << "File not found: " << fd;
return -1;
} ZeroCopyInputStream* raw_input = new FileInputStream(fd);
CodedInputStream* coded_input = new CodedInputStream(raw_input);
coded_input->SetTotalBytesLimit(INT_MAX, 536870912); success = proto->ParseFromCodedStream(coded_input); delete coded_input;
delete raw_input;
close(fd); return success;
}
return success;
}

3,参考caffe/proto/caffe.pb.cc 文件,获取对应的参数

  例如读取文件后:

     std::string trained_filename = "lenet_iter_10000.caffemodel";

	caffe::NetParameter net_protobuf;

	if(loadCaffeNet(trained_filename, &net_protobuf)){
std::cout<<"load net param success"<<std::endl;
}else{
std::cout<<"load net param failed"<<std::endl;
}

  获取网络层数:

int num_source_layers = net_protobuf.layer_size();

  

for(int i=0; i<num_source_layers; ++i){
caffe::LayerParameter layer_param = net_protobuf.layer(i);
std::cout << layer_param.name() << std::endl;
std::cout << layer_param.type() << std::endl; int blobsize = layer_param.blobs_size();
std::cout << "blobs_size: "<<blobsize << std::endl;
for(int j=0; j<blobsize; j++){
int dataSize = layer_param.blobs(j).data_size(); if(j==0){
std::cout << " weight data_size: "<<dataSize << std::endl;
int ind_weight = dataSize;
weight = (float*)malloc(ind_weight*sizeof(float));
for(int index=0; index<dataSize; index++){
weight[index] = layer_param.blobs(j).data(index);
}
              std::cout<<" Convolution->:"<<std::endl;
              std::cout<<" layer_param.blobs weight_n "<<layer_param.blobs(0).shape().dim(0)<<std::endl; //n
              std::cout<<" layer_param.blobs weight_c "<<layer_param.blobs(0).shape().dim(1)<<std::endl; //c
              std::cout<<" layer_param.blobs weight_h "<<layer_param.blobs(0).shape().dim(2)<<std::endl; //h
              std::cout<<" layer_param.blobs weight_w "<<layer_param.blobs(0).shape().dim(3)<<std::endl; //w
		}
else if(j==1){
std::cout << " bias data_size: "<<dataSize << std::endl;
int ind_bias = dataSize;
bias = (float*)malloc(ind_bias*sizeof(float));
for(int index=0; index<dataSize; index++){
bias[index] = layer_param.blobs(j).data(index);
} } }
}

  以上仅仅是部分代码,需要注意调试!

其中caffe.pb.cc 和caffe.pb.hpp 文件是基于caffe.proto文件生成的。执行过程为:protoc caffe.proto --cpp_out=. ;将caffe.proto文件,基于目前protobuf的版本生成对应的版本的.cc 和 .hpp文件。

Caffe模型读取的更多相关文章

  1. (原)linux下caffe模型转tensorflow模型

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7419352.html 参考网址: https://github.com/ethereon/caffe- ...

  2. 使用caffe模型测试图片(python接口)

    1.加载相关模块 1.1 加载numpy import numpy as np 1.2 加载caffe 有两种方法. 方法一(静态导入): 找到当前环境使用的python的site-packages目 ...

  3. TensorFlow模型转为caffe模型

    最近由于要将训练好的模型移植到硬件上,因此需要将TensorFlow转为caffe模型. caffe模型需要两个文件,一个是定义网络结构的prototxt,一个是存储了参数的caffemodel文件. ...

  4. c++ 和 matlab 下的caffe模型输入差异

    在向一个caffe模型传递输入数据的时候,要注意以下两点: 1. opencv中Mat数据在内存中的存放方式是按行存储,matlab中图像在内存中的存放方式是按列存储. 2. opencv中Mat数据 ...

  5. 机器学习进阶-目标追踪-SSD多进程执行 1.cv2.dnn.readnetFromCaffe(用于读取已经训练好的caffe模型) 2.delib.correlation_tracker(生成追踪器) 5.cv2.writer(将图片写入视频中) 6.cv2.dnn.blobFromImage(图片归一化) 10.multiprocessing.process(生成进程)

    1. cv2.dnn.readNetFromCaffe(prototxt, model)  用于进行SSD网络的caffe框架的加载 参数说明:prototxt表示caffe网络的结构文本,model ...

  6. DL开源框架Caffe | 模型微调 (finetune)的场景、问题、技巧以及解决方案

    转自:http://blog.csdn.net/u010402786/article/details/70141261 前言 什么是模型的微调?   使用别人训练好的网络模型进行训练,前提是必须和别人 ...

  7. caffe数据读取

    caffe的数据读取分为lmdb和 待清理,包括fast 这个一系列是怎么转换成lmdb数据的

  8. caffe模型各层数据和参数可视化

    先用caffe对cifar10进行训练,将训练的结果模型进行保存,得到一个caffemodel,然后从测试图片中选出一张进行测试,并进行可视化. In [1]: #加载必要的库 import nump ...

  9. caffe模型的一些解释~

    转自:https://blog.csdn.net/wjmishuai/article/details/50890214 刚开始摸caffe,找了个比较清楚的模型. 原始数据是28* input: &q ...

随机推荐

  1. FL2440 rt3070模块station模式移植

    ---------------------------------------------------------------------------------------------------- ...

  2. 如何更专业的使用Chrome开发者工具

    顾名思义Chrome开发工具就是一个工具,它允许Web开发人员可以通过浏览器应用程序干预和操作Web页面,也可以通过这个工具调试和测试Web页面或Web应用程序.有了这个工具,你可以做很多有趣的事情: ...

  3. 转:从零开始做app需要做的事情列表

    https://qdan.me/list/VaXl7N8emfv1ayWg 从零开始做App的Bootstrap 做一个App,需要很多东西. 不定期更新. 团队 工欲善其事,必先利其器. 需求管理 ...

  4. [TypeScript] Dynamically initialize class properties using TypeScript decorators

    Decorators are a powerful feature of TypeScript that allow for efficient and readable abstractions w ...

  5. 作为Java程序员应该掌握的10项技能

    本文详细罗列了作为Java程序员应该掌握的10项技能.分享给大家供大家参考.具体如下: 1.语法:必须比较熟悉,在写代码的时候IDE的编辑器对某一行报错应该能够根据报错信息知道是什么样的语法错误并且知 ...

  6. 怎样改动SharePoint管理中心的语言

    在安装了语言包之后,创建站点集的时候,就能够选择语言了. 可是SharePoint管理中心的语言没有变.这个时候.怎么才干让管理中心也使用新的语言呢? 能够依照下面方法. 首先去https://msd ...

  7. 使用Nginx+uWSGI+Django方法部署Django程序(下)

    在上一篇文章<五步教你实现使用Nginx+uWSGI+Django方法部署Django程序(上)>中,阐述了如何只使用uWSGI来部署Django程序. 当然,单单只有uWSGI是不够的, ...

  8. Lomboz插件的介绍 下载 安装 问题

    http://www.blogjava.net/javaandcc/articles/251334.html Lomboz是Eclipse的一个主要的开源插件(open-source plug-in) ...

  9. Python课程之元组

    元组(Tuple) 一.定义: 与列表(list)不同的是,元组不支持修改,但是若元组中的元素本身是可变对象,如列表,则可以修改.元素之间用逗号隔开,并且元素的类型可以任意. 二.操作: 1.创建:直 ...

  10. Lucene4.0 LogMergePolicy

    其特点是给定的段列表顺序归并,不像TieredMergePolicy那样按大小排序之后决定. norm = log(10),levelFloor=log(minMergeSize)/norm,对段列表 ...