sklearn实践_普通线性回归
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data = pd.read_csv(r"C:\Users\Oscar\Downloads\Advertising.csv") x = data[["TV","Radio","Newspaper"]]
y=data["Sales"]
plt.plot(data["TV"],y,"ro",Label="TV")
plt.plot(data["Radio"],y,"g^",Label="Radio")
plt.plot(data["Newspaper"],y,"bo",Label="Newspaper")
plt.legend(loc="lower right")
plt.grid()
plt.show plt.figure(figsize=(10,10)) plt.subplot(311)
plt.plot(data["TV"],y,"ro",Label="TV")
plt.title("TV") plt.subplot(312)#plt.subplot(3,1,2)
plt.plot(data["Newspaper"],y,"g^",Label="Newspaper")
plt.title("Newspaper") plt.subplot(313)
plt.plot(data["Radio"],y,"bo",Label="Radio")
plt.title("Radio") #建模
feature_cols = ["TV","Radio","Newspaper"]
X = data[feature_cols]
y = data["Sales"]
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y)
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train,y_train)
print(model)
print(model.coef_)
print(model.intercept_)
y_rep = model.predict(X_test) #评估
from sklearn import metrics
import numpy as np
sum_mean = 0
for i in range(len(y_rep)):
sum_mean+=(y_rep[i]-y_test.values[i])**2
print("RMSE:",np.sqrt(sum_mean/len(y_rep))) #作图
plt.figure()
plt.plot(range(len(y_rep)),y_rep,"b",Label="pre")
plt.plot(range(len(y_rep)),y_test,"r",Label="test")
plt.legend(loc="upper right")
plt.xlabel("the number of sales")
plt.ylabel("values of sales")
sklearn实践_普通线性回归的更多相关文章
- memcached vs MySQL Memory engine table 速度比较_XMPP Jabber即时通讯开发实践_百度空间
memcached vs MySQL Memory engine table 速度比较_XMPP Jabber即时通讯开发实践_百度空间 memcached vs MySQL Memory engin ...
- 提高mysql memory(heap) engine内存性能的开源补丁_XMPP Jabber即时通讯开发实践_百度空间
提高mysql memory(heap) engine内存性能的开源补丁_XMPP Jabber即时通讯开发实践_百度空间 提高mysql memory(heap) engine内存性能的开源补丁
- Python数模笔记-Sklearn(4)线性回归
1.什么是线性回归? 回归分析(Regression analysis)是一种统计分析方法,研究自变量和因变量之间的定量关系.回归分析不仅包括建立数学模型并估计模型参数,检验数学模型的可信度,也包括利 ...
- 使用sklearn机器学习库实现线性回归
import numpy as np # 导入科学技术框架import matplotlib.pyplot as plt # 导入画图工具from sklearn.linear_model imp ...
- 深入浅出深度学习:原理剖析与python实践_黄安埠(著) pdf
深入浅出深度学习:原理剖析与python实践 目录: 第1 部分 概要 1 1 绪论 2 1.1 人工智能.机器学习与深度学习的关系 3 1.1.1 人工智能——机器推理 4 1.1.2 机器学习—— ...
- sklearn机器学习实战-简单线性回归
记录下学习使用sklearn,将使用sklearn实现机器学习大部分内容 基于scikit-learn机器学习(第2版)这本书,和scikit-learn中文社区 简单线性回归 首先,最简单的线性回归 ...
- 【2017集美大学1412软工实践_助教博客】团队作业10——项目复审与事后分析(Beta版本)
写在前面的话 转眼轰轰烈烈本学期的软工实践就结束了,这个过程中想必在熬夜敲代码,激烈讨论中留下诸多回忆的同时,也收获了不少.恭喜所有团队完成了本阶段冲刺,此外,由于大家的贡献分给的都很平均,将个人贡献 ...
- 决策树decision tree原理介绍_python sklearn建模_乳腺癌细胞分类器(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 机器学习之支持向量机原理和sklearn实践
1. 场景描述 问题:如何对对下图的线性可分数据集和线性不可分数据集进行分类? 思路: (1)对线性可分数据集找到最优分割超平面 (2)将线性不可分数据集通过某种方法转换为线性可分数据集 下面将带着这 ...
随机推荐
- Python基础(7)_闭包函数、装饰器
一.闭包函数 闭包函数:1.函数内部定义函数,成为内部函数, 2.改内部函数包含对外部作用域,而不是对全局作用域名字的引用那么该内部函数成为闭包函数 #最简单的无参闭包函数 def func1() n ...
- LeetCode:杨辉三角【118】
LeetCode:杨辉三角[118] 题目描述 给定一个非负整数 numRows,生成杨辉三角的前 numRows 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 5 输出: ...
- Loadrunder场景设计篇——手工场景设计
概述 通过选择需要运行的脚本,分配运行脚本的负载生成器,在脚本中分配Vuser来建立手工场景 手工场景就是自行设置虚拟用户的变化,主要是通过设计用户的添加和减少过程,来模拟真实的用户请求模型,完成负载 ...
- HASH、HASH函数、HASH算法的通俗理解
之前经常遇到hash函数或者经常用到hash函数,但是hash到底是什么?或者hash函数到底是什么?却很少去考虑.最近同学去面试被问到这个问题,自己看文章也看到hash的问题.遂较为细致的追究了一番 ...
- mongodb php 支持
http://bbs.csdn.net/topics/391931404?page=1 windows下为php7.0.4安装目前官方版本对应的最新的php_mongodb.dll扩展,该扩展版本为1 ...
- 物理分辨率与逻辑分辨率,pt与px
有些小伙伴们,在使用chrome的移动端调试工具调试网页的时候,会发现iphone6上的尺寸为375*667,不禁差异,iphone6的分辨率不是750*1334吗? 实际上调试器上的大小单位不是px ...
- HTML图片热区 map area 标签
实例 <img src ="planets.gif" alt="Planets" usemap ="#planetmap" /> ...
- Linux学习笔记001——win下安装Linux虚拟机
我研二之前算是一个纯粹的计算机小白,因为某些原因开始接触了计算机方面的知识. Linux系统也就是前几个月才听说,因某些需求需要在Linux环境下运行.纯的Linux系统不太现实, 所以在他人帮助和自 ...
- 分开统计的sql写法
DECLARE @StartDate DATETIME= '2017-10-13 00:00:00';DECLARE @EndDate DATETIME= '2017-11-13 23:00:00'; ...
- rem根据网页的根元素(html)来设置字体大小
rem根据网页的根元素来设置字体大小,和em(font size of the element)的区别是,em是根据其父元素的字体大小来设置,而rem是根据网页的跟元素(html)来设置字体大小