无监督学习(Unsupervised Learning)

聚类无监督学习

特点

  • 只给出了样本, 但是没有提供标签
  • 通过无监督学习算法给出的样本分成几个族(cluster), 分出来的类别不是我们自己规定的, 而是无监督学习算法自己计算出来的

K-means 聚类算法

规定

  • \(c^{(i)}\): 表示\(x^{(i)}\)属于哪个cluster, 如\(x^{(1)}\)属于\(c^{(1)}\)簇, 如果\(c^{(1)}=1\), 则\(x^{(1)}\)划分在第1个类别
  • \(\mu_k\): 表示第k簇的聚类中心样本点
  • \(\mu_{c^{(i)}}\): 表示样本\(x^{(i)}\)所在的聚类\(c^{(i)}\)的聚类中心
  • \(m\): 样本的数量
  • \(n\): 特征的数量

步骤

  1. 从现有的样本中调出K个样本作为聚类中心(采用随机初始化的方式选择样本)
  2. 计算其余样本分别到这K个样本的欧拉距离
  3. 某个样本距离这K个聚类中心的哪个最近, 就把这个样本归为那个类别, 以此类推, 将所有的样本进行归类
  4. 在已经分好类的基础上, 计算出每一个类别的均值(中心), 再重复2和3步骤, 知道损失函数达到最优点(可能仅仅是达到了局部最优点(local optima), K-means算法最终聚类的结果与第1步中K的随机初始化的值后很大的关系, 因为在结束了K-means算法之后我们应该重复1-4步多次, 得到损失函数最小), 结束K-means算法
  5. 注意: K值的选择需要人工调整

理性的认识

  • 在K-means中主要就是要\(min_{c^{(i)},\mu^{(j)}}J(c^{(1)},c^{(2)},...,c^{(m)},\mu^{(1)},\mu^{(2)},...,\mu^{(k)})\)
  1. 随机初始化K, K要小于m
  2. 在for循环中一个一个的取出样本计算出所有样本到最近的中心的距离, 保证J最小
  3. 在另外一个for循环中取出中心点, 移动中心点
  4. 重复1-3步骤

如何选择K的值

  • elbow method: 画出K与J的图像, 找出凸出点, 那个就是期望的K值
  • 根据实际需求划分

无监督学习(Unsupervised Learning)的更多相关文章

  1. 如何区分监督学习(supervised learning)和非监督学习(unsupervised learning)

    监督学习:简单来说就是给定一定的训练样本(这里一定要注意,样本是既有数据,也有数据对应的结果),利用这个样本进行训练得到一个模型(可以说是一个函数),然后利用这个模型,将所有的输入映射为相应的输出,之 ...

  2. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  3. 【ML入门系列】(三)监督学习和无监督学习

    概述 在机器学习领域,主要有三类不同的学习方法: 监督学习(Supervised learning) 非监督学习(Unsupervised learning) 半监督学习(Semi-supervise ...

  4. Unsupervised learning无监督学习

    Unsupervised learning allows us to approach problems with little or no idea what our results should ...

  5. 1-4 无监督学习(Unsupervised Learning)

    无监督学习定义: [无监督学习]中没有任何的标签或者是有相同的标签或者就是没标签.所以我们已知数据集,却不知如何处理,也未告知每个数据点是什么.别的都不知道,就是一个数据集.你能从数据中找到某种结构吗 ...

  6. 131.005 Unsupervised Learning - Cluster | 非监督学习 - 聚类

    @(131 - Machine Learning | 机器学习) 零. Goal How Unsupervised Learning fills in that model gap from the ...

  7. Machine Learning分类:监督/无监督学习

    从宏观方面,机器学习可以从不同角度来分类 是否在人类的干预/监督下训练.(supervised,unsupervised,semisupervised 以及 Reinforcement Learnin ...

  8. Machine Learning——Unsupervised Learning(机器学习之非监督学习)

    前面,我们提到了监督学习,在机器学习中,与之对应的是非监督学习.无监督学习的问题是,在未加标签的数据中,试图找到隐藏的结构.因为提供给学习者的实例是未标记的,因此没有错误或报酬信号来评估潜在的解决方案 ...

  9. machine learning----->有监督学习和无监督学习的区别

    1.有监督学习和无监督学习的区别: 1.1概述: 有监督学习是知道变量值(数据集)和结果(已知结果/函数值),但是不知道函数样式(函数表达式)的情况下通过machine learning(ML)获得正 ...

随机推荐

  1. 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛

    Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...

  2. linux系统安全及应用——弱口令检测

    Joth the Ripper,简称JR,一款密码分析工具,支持字典式的暴力破解,通过对shadow文件的口令分析,可以检测密码强度,官方网站http://www.openwall.com/john/ ...

  3. loj #535. 「LibreOJ Round #6」花火 树状数组求逆序对+主席树二维数点+整体二分

    $ \color{#0066ff}{ 题目描述 }$ 「Hanabi, hanabi--」 一听说祭典上没有烟火,Karen 一脸沮丧. 「有的哦-- 虽然比不上大型烟花就是了.」 还好 Shinob ...

  4. opencv学习笔记(六)---图像梯度

    图像梯度的算法有很多方法:sabel算子,scharr算子,laplacian算子,sanny边缘检测(下个随笔)... 这些算子的原理可参考:https://blog.csdn.net/poem_q ...

  5. javascript阻止事件冒泡的方法

    有的时候我们需要实现这样的功能: 点击某个蒙版,该蒙版消失,但是如果点击蒙版上的某个元素,希望蒙版不消失,这就需要用到阻止事件的冒泡了 html: <div id="outer&quo ...

  6. org.apache.storm.utils.NimbusLeaderNotFoundException: could not find leader nimbus from seed hosts["datanode9"]. Did you specify a valid of nimbus hosts for config nimbus.seeds?

    出现这个异常的原因主要是zookeeper没有正常工作引起的.可以在storm-conf-storm.yaml中设置 storm.zookeeper.servers: -"zookeeper ...

  7. 25.Remove Nth Node From End of List(删除链表的倒数第n个节点)

    Level:   Medium 题目描述: Given a linked list, remove the n-th node from the end of list and return its ...

  8. [PowerShell]Quote in String

    今天遇到一个问题,如何在Select-String的Pattern参数里能使用双引号 比如 Select-String -path . -pattern "Lines: <span c ...

  9. <转> django模板语言filter方法

    Django的模板是一个简单的文本文件,它可以生成任何文本格式(HTML.XML.CSV等),在本文开始之前先看一个Django模板的例子: 从这个例子中可以看到,模板标签可以是单独出现的,如exte ...

  10. href="#" 链接到当前页面

    <a href="#" onclick="window.close()">关闭</a>将href="#"是指联接到当 ...