Super Jumping! Jumping! Jumping(最大递增子序列的和)
The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path.
Your task is to output the maximum value according to the given chessmen list.
InputInput contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int.
A test case starting with 0 terminates the input and this test case is not to be processed.
OutputFor each case, print the maximum according to rules, and one line one case.
Sample Input
3 1 3 2
4 1 2 3 4
4 3 3 2 1
0
Sample Output
4
10
3
题意:在start->end这条路上有多个棋手,每个棋手都有一个价值,如果你想获得某个棋手的价值则该棋手的价值必须比上一个获得的棋手的价值大,求在这条路线上你能获得的最大价值
分析:从题面上来看,是让我们求最大递增子序列的和。如果我们要求前k项max(lIs),那我们可以从前k项遍历,如果str[j]<str[k],则dp[k]=max(dp[k],dp[j]+str[k]),反之我们不更新。
dp[i]表示前i项最大递增子序列的和
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<iostream>
#include<map>
#include<vector>
#define Inf 0x3f3f3f3f
#define PI acos(-1.0)
using namespace std;
int dp[];
int str[];
int main()
{
int m,n,i,j,pos;
while(scanf("%d",&m)!=-&&m)
{
for(i=; i<=m; i++)
{
scanf("%d",&str[i]);
}
memset(dp,,sizeof(dp));
int ans=-Inf;
for(i=;i<=m;i++)
{
dp[i]=str[i];
for(j=;j<=i;j++)
{
if(str[j]<str[i])
{
dp[i]=max(dp[i],dp[j]+str[i]);
}
}
ans=max(ans,dp[i]); }
cout<<ans<<endl;
}
return ;
}
我们会发现对与前n项的max(LIS),都有这个重叠子问题,因此
我们构造状态转移方程dp[k]=max(dp[k],dp[j]+str[k])
Super Jumping! Jumping! Jumping(最大递增子序列的和)的更多相关文章
- HDU 1087 Super Jumping! Jumping! Jumping! 最大递增子序列
Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
- HDU 1087 简单dp,求递增子序列使和最大
Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
- (转载)最长递增子序列 O(NlogN)算法
原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...
- nyoj17_又做最大递增子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- 最长公共子序列(LCS)和最长递增子序列(LIS)的求解
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- 最长递增子序列 O(NlogN)算法
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...
- [LintCode] Longest Increasing Continuous Subsequence 最长连续递增子序列
Give an integer array,find the longest increasing continuous subsequence in this array. An increasin ...
- 51nod 1134 最长递增子序列
题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
随机推荐
- 软工作业-wc(Python实现)
GitHub地址:GitHub PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 30 40 · Esti ...
- UI- UINavigationController UITabBarController 使用总结
#pragma mark - UINavigationController UITabBarController ====================================== 控制器 ...
- Rhel7安装及网卡、yum、vmtools配置和修改主机名
(1)安装Vmware WorkStation 11.0 和 RetHatEnterpriseLinux[RHEL]7.0 步骤就不描述了,网上都可以找到 (2)安装VMware Tools )虚拟机 ...
- 拦截器springmvc防止表单重复提交【1】
[参考博客:http://www.cnblogs.com/hdwpdx/archive/2016/03/29/5333943.html] springmvc 用拦截器+token防止重复提交 首先,防 ...
- Redis设计与实现 (一): 简单动态字符串
1.定义 Redis没有使用C语言的字符串, C语言的字符串只会用在不需要对字符串修改而只使用其值地方. Redis使用SDS表示字符串, 结构定义 : typedef char *sds; str ...
- 如何理解Robot Framework
不知不觉公众号已经有很多人关注了,小编先谢谢大家的支持-今天我们就来谈一谈我对RF的理解,因为前段时间换了工作,目前RF知识基本用不上了.其实我在上一份工作中大部分都是在反复的使用前面讲过的知识——其 ...
- z变换的性质
z变换的许多重要性质在数字信号处理中常常要用到. 序列 z变换 收敛域 1)x(n) X(z) Rx-< |z| <Rx+ 2)y(n) Y(z) Ry-< |z| <Ry+ ...
- 1.2 java web的发展历史
前言 了解java web的发展历史和相关技术的演进历程,非常有助于加深对java web技术的理解和认识. 阅读目录 1.Servlet的出现 2.Jsp的出现 3.倡导了MVC思想的Servlet ...
- JS ready和onload事件 比较分析
页面加载完成有两种事件: 一是ready,表示文档结构已经加载完成(不包含图片等非文字媒体文件); 二是onload,指示页 面包含图片等文件在内的所有元素都加载完成.(可以说:ready 在onlo ...
- 调用 SSPI 失败,请参见内部异常 解决方法
2017-11-12 12:49:53:706] OnServerConnectionAvailable error : System.Security.Authentication.Authenti ...