Problem Description
  Let f(x) = anxn +...+ a1x +a0, in which ai (0 <= i <= n) are all known integers. We call f(x) 0 (mod m) congruence equation. If m is a composite, we can factor m into powers of primes and solve every such single equation after which we merge them using the Chinese Reminder Theorem. In this problem, you are asked to solve a much simpler version of such equations, with m to be prime's square.
 
Input
  The first line is the number of equations T, T<=50.
  Then comes T lines, each line starts with an integer deg (1<=deg<=4), meaning that f(x)'s degree is deg. Then follows deg integers, representing an to a0 (0 < abs(an) <= 100; abs(ai) <= 10000 when deg >= 3, otherwise abs(ai) <= 100000000, i<n). The last integer is prime pri (pri<=10000). 
  Remember, your task is to solve f(x) 0 (mod pri*pri)
 
Output
  For each equation f(x) 0 (mod pri*pri), first output the case number, then output anyone of x if there are many x fitting the equation, else output "No solution!"
 
题目大意:给你一个最高4次幂的多项式,求一个x,满足f(x) mod phi² = 0。
思路:先枚举x = [0, phi),如果f(x) mod phi = 0,再枚举x2 = x,每次加phi,直到f(x) mod phi² = 0,输出结果。找不到输出No solution。
PS:我也不知道为什么是对的我看别人说是这么做的……我数论知识很少……我只知道要满足f(x) mod phi² = 0就要先满足f(x) mod phi = 0……
 
代码(62MS):
 #include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
typedef long long LL; const int MAXN = ; int T, deg;
LL phi;
LL a[MAXN]; LL f(LL x, LL m) {
LL ret = , xx = ;
for(int i = ; i <= deg; ++i) {
ret = (ret + a[i] * xx) % m;
xx = (xx * x) % m;
}
return ret;
} LL ans, ret;
int t; void solve() {
for(ans = ; ans < phi; ++ans) {
if(f(ans, phi) == ) {
for(ret = ans; ret <= phi * phi; ret += phi)
if(f(ret, phi * phi) == ) {
printf("Case #%d: %d\n", t, (int)ret);
return ;
}
}
}
printf("Case #%d: No solution!\n", t);
} int main() {
cin>>T;
for(t = ; t <= T; ++t) {
cin>>deg;
for(int i = deg; i >= ; --i) cin>>a[i];
cin>>phi;
solve();
}
}

HDU 4569 Special equations(枚举+数论)(2013 ACM-ICPC长沙赛区全国邀请赛)的更多相关文章

  1. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  2. HDU 4569 Special equations (数学题)

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4569 题意:给你一个最高幂为4的一元多项式,让你求出一个x使其结果模p*p为0. 题解:f(x)%(p ...

  3. HDU 4569 Special equations(数学推论)

    题目 //想不出来,看了解题报告 /* 题意:给你一个最高幂为4的一元多项式,让你求出一个x使其结果模p*p为0. 题解:f(x)%(p*p)=0那么一定有f(x)%p=0,f(x)%p=0那么一定有 ...

  4. HDU 4741 Save Labman No.004 2013 ACM/ICPC 杭州网络赛

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4741 题意:给你两条异面直线,然你求着两条直线的最短距离,并求出这条中垂线与两直线的交点. 需要注意的是 ...

  5. 2013 ACM-ICPC长沙赛区全国邀请赛—Special equations

    ……但是没仔细看,直接跳过了 这题直接枚举就可以过了 ;}

  6. HDU 4571 Travel in time ★(2013 ACM/ICPC长沙邀请赛)

    [题意]给定N个点,每个点有一个停留所需的时间Ci,和停留能够获得的满意度Si,有M条边,每条边代表着两个点走动所需的时间ti,现在问在规定的T时间内从指定的一点S到E能够获得的最大的满意度是多少?要 ...

  7. HDU 4573 Throw the Stones(动态三维凸包)(2013 ACM-ICPC长沙赛区全国邀请赛)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4573 Problem Description Remember our childhood? A fe ...

  8. 2013 ACM/ICPC 长沙现场赛 C题 - Collision (ZOJ 3728)

    Collision Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge There's a round medal ...

  9. HDU 4571 Travel in time(最短路径+DP)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description Bob gets tired of playing games, leaves Alice, and travels to Changsha alone. Yu ...

随机推荐

  1. 第一次写C语言小程序,可以初步理解学生成绩管理系统的概念

    1 成绩管理系统概述 1.1  管理信息系统的概念  管理信息系统(Management Information Systems,简称MIS),是一个不断发展的新型学科,MIS的定义随着科技的进步也在 ...

  2. 基于Cent os 云服务器中SVN 服务器的搭建---具体实践是可行的 一次备注便于后续查找

    https://blog.csdn.net/shadowyingjian/article/details/80588544http://www.hongyanliren.com/2015m04/329 ...

  3. JSTL&EL

    JSTL <1> 实现了JSP页面代码的复用 <2> 使得可读性更强 导入 <%@ taglib uri="http://java.sun.com/jsp/js ...

  4. mix-blend-mode 混合模式 background-blend-mode 背景混合模式 isolation:isolate 隔离

    css3 mix-blend-mode 混合模式 该属性不仅可以作用于HTML,还可以作用于SVG 兼容性: IE 8~11 Edge 12~14 Firefox 41~47 chrome 45~51 ...

  5. ant-design-pro使用服务器数据接口代理配置

    因为是新入门antd-pro这个的小白,所以在mock数据和服务器数据切换这里搞了将近2天才弄好,配置如下,供各位初学者参考,如有错误的地方,请大神指出~叩谢!! 下面开始干货: 1..roadhog ...

  6. ABAP术语-BAPI Explorer

    BAPI Explorer 原文:http://www.cnblogs.com/qiangsheng/archive/2007/12/24/1012110.html Tool for developi ...

  7. Linux运维工作中需要掌握的知识

    说到工具,在行外可以说是技能,在行内我们一般称为工具,就是运维必须要掌握的工具.我就大概列出这几方面,这样入门就基本没问题了.linux系统如果是学习可以选用redhat或centos,特别是cent ...

  8. vue组件中的样式属性--scoped

    Scoped CSS Scoped CSS规范是Web组件产生不污染其他组件,也不被其他组件污染的CSS规范. vue组件中的style标签标有scoped属性时表明style里的css样式只适用于当 ...

  9. MySQL数据操作(DML)

    表结构准备: mysql> CREATE TABLE student( -> sid INT PRIMARY KEY AUTO_INCREMENT, ), -> age INT, ) ...

  10. tp5 数据库信息导出到excel(带图片)

    function excel_down(){ //导入谁就去查谁 $data=Db::name('order_xueyou')->select(); // 导出Exl // import(&qu ...