Description

Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the still available nodes from communicating with each other. Nodes 1 and 2 could still communicate with each other as could nodes 4 and 5, but communication between any other pairs of nodes would no longer be possible.

Node 3 is therefore a Single Point of Failure (SPF) for this network. Strictly, an SPF will be defined as any node that, if unavailable, would prevent at least one pair of available nodes from being able to communicate on what was previously a fully connected network. Note that the network on the right has no such node; there is no SPF in the network. At least two machines must fail before there are any pairs of available nodes which cannot communicate.

Input

The input will contain the description of several networks. A network description will consist of pairs of integers, one pair per line, that identify connected nodes. Ordering of the pairs is irrelevant; 1 2 and 2 1 specify the same connection. All node numbers will range from 1 to 1000. A line containing a single zero ends the list of connected nodes. An empty network description flags the end of the input. Blank lines in the input file should be ignored.

Output

For each network in the input, you will output its number in the file, followed by a list of any SPF nodes that exist.

The first network in the file should be identified as "Network #1", the second as "Network #2", etc. For each SPF node, output a line, formatted as shown in the examples below, that identifies the node and the number of fully connected subnets that remain when that node fails. If the network has no SPF nodes, simply output the text "No SPF nodes" instead of a list of SPF nodes.

Sample Input

1 2
5 4
3 1
3 2
3 4
3 5
0 1 2
2 3
3 4
4 5
5 1
0 1 2
2 3
3 4
4 6
6 3
2 5
5 1
0 0

Sample Output

Network #1 SPF node 3 leaves 2 subnets Network #2 No SPF nodes Network #3 SPF node 2 leaves 2 subnets SPF node 3 leaves 2 subnets

题意: 求割点 并输出 (当删除割点时) 将原图分为几个连通图;

题解: tarjan 模板

low[u] 是从u或u的子孙出发通过回边能够到达的最低深度优先数

dfn[u] 时间戳

u是关节点的 条件

1. 若u为根节点 u至少有两个子女

2. 若u不是根节点  他又一个子女w low[w]>=dfn[u]

 #include<iostream>
#include<cstring>
#include<cstdio>
#define ll __int64
#define mod 1
#define PI acos(-1.0)
using namespace std;
int Edge[][];
int visited[];
int nodes;
int tmpdfn;
int dfn[];
int low[];
int son;
int subnets[];
void dfs(int u)
{
for(int v=;v<=nodes;v++)
{
if(Edge[u][v])
{
if(!visited[v])
{
visited[v]=;
tmpdfn++ ;
dfn[v]=low[v]=tmpdfn;
dfs(v);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u])
{
if(u!=)
subnets[u]++;
if(u==)
son++;
} }
else
low[u]=min(low[u],dfn[v]);
}
}
}
void init()
{
low[]=dfn[]=;
tmpdfn=;
son=;
memset(visited,,sizeof(visited));
visited[]=;
memset(subnets,,sizeof(subnets));
}
int main()
{
int i;
int u,v;
int find;
int number=;
while()
{
scanf("%d",&u);
if(u==)
break;
memset(Edge,,sizeof(Edge));
nodes=;
scanf("%d",&v);
if(u>nodes)
nodes=u;
if(v>nodes)
nodes=v;
Edge[u][v]=;
Edge[v][u]=;
while()
{
scanf("%d",&u);
if(u==)
break;
scanf("%d",&v);
if(u>nodes)
nodes=u;
if(v>nodes)
nodes=v;
Edge[u][v]=;
Edge[v][u]=;
}
if(number>)
printf("\n");
printf("Network #%d\n",number);
number++;
init();
dfs();
if(son>)
subnets[]=son-;
find=;
for(i=;i<=nodes;i++)
{
if(subnets[i])
{
find=;
printf(" SPF node %d leaves %d subnets\n",i,subnets[i]+);
}
}
if(!find)
printf(" No SPF nodes\n"); }
return ;
}
/*割点 图论书模板*/

poj 1523 割点 tarjan的更多相关文章

  1. POJ 1523 SPF tarjan求割点

                                                                   SPF Time Limit: 1000MS   Memory Limit ...

  2. POJ 1523 (割点+连通分量)

    题目链接:http://poj.org/problem?id=1523 题目大意:连通图,找图中割点,并计算切除该割点后,图中的连通分量个数. 解题思路: POJ的数据很弱. Tarjan法求割点. ...

  3. SPF POJ - 1523 割点+并查集

    题意: 问你这个图中哪个点是割点,如果把这个点去掉会有几个子网 代码: 1 //给你几个点,用着几个点形成了一个图.输入边形成的图,问你这个图中有多少个割点.每一个割点去掉后会形成几个强连通分量 2 ...

  4. Electricity POJ - 2117 + SPF POJ - 1523 去除割点后求强连通分量个数问题

    Electricity POJ - 2117 题目描述 Blackouts and Dark Nights (also known as ACM++) is a company that provid ...

  5. poj 3417 Network(tarjan lca)

    poj 3417 Network(tarjan lca) 先给出一棵无根树,然后下面再给出m条边,把这m条边连上,然后每次你能毁掉两条边,规定一条是树边,一条是新边,问有多少种方案能使树断裂. 我们设 ...

  6. 洛谷3388 【模板】割点 tarjan算法

    题目描述 给出一个n个点,m条边的无向图,求图的割点. 关于割点 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点(cut vertex / articul ...

  7. zoj 1119 / poj 1523 SPF (典型例题 求割点 Tarjan 算法)

    poj : http://poj.org/problem?id=1523 如果无向图中一个点 u 为割点 则u 或者是具有两个及以上子女的深度优先生成树的根,或者虽然不是一个根,但是它有一个子女 w, ...

  8. poj 1523 SPF(tarjan求割点)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  9. POJ 1523 SPF 割点与桥的推断算法-Tarjan

    题目链接: POJ1523 题意: 问一个连通的网络中有多少个关节点,这些关节点分别能把网络分成几部分 题解: Tarjan 算法模板题 顺序遍历整个图,能够得到一棵生成树: 树边:可理解为在DFS过 ...

随机推荐

  1. 3. 进程间通信IPC

    一.概念 IPC: 1)在linux环境中的每个进程各自有不同的用户地址空间.任何一个进程的全局变量在另一个进程中都看不到,所以进程和进程之间是不能相互访问. 2)如果进程间要交换数据必须通过内核,在 ...

  2. Drupal 网站漏洞修复以及网站安全防护加固方法

    drupal是目前网站系统使用较多一个开源PHP管理系统,架构使用的是php环境+mysql数据库的环境配置,drupal的代码开发较为严谨,安全性较高,但是再安全的网站系统,也会出现网站漏洞,dru ...

  3. python2.7练习小例子(二十一)

        21):1.题目:两个乒乓球队进行比赛,各出三人.甲队为a,b,c三人,乙队为x,y,z三人.已抽签决定比赛名单.有人向队员打听比赛的名单.a说他不和x比,c说他不和x,z比,请编程序找出三队 ...

  4. LeetCode:9. Palindromic Number(Medium)

    原题链接:https://leetcode.com/problems/palindrome-number/description/ 1. 题目要求:判断一个int类型整数是否是回文,空间复杂度O(1) ...

  5. autofac无法解析一例

    在asp.net mvc分项目开发中,如果类库位于其他的项目中,则必须在global中对其他项目的类库进行注册,否则会报“ None of the constructors found with 'A ...

  6. Datetime与Datetime2的区别

    Datetime:        时间格式,对应于数据库中的DateTime类型,对应于.NET里面的System. DateTime类型.DateTime支持日期从1753年1月1日到9999年12 ...

  7. js学习日记-变量的坑

    js变量细节是前端面试经常遇到的问题,可见其重要程度,要想掌握这个知识点,需注意以下几点: 变量提升 所谓变量提升,就是使用了var关键字申明的变量,会提升到所在作用域的顶部.es5的作用域分为全局作 ...

  8. 【个人训练】(POJ3279)Fliptile

    最近在刷kuangbin神犇的各种套题....感觉自己好弱啊.....还是要多多训练,跟上大神的脚步.最近的这十几题都比较水,记下来这一条我比较印象深刻.也比较难的题目吧(之后应该不会再有水题写了,珍 ...

  9. LightGBM的算法介绍

    LightGBM算法的特别之处 自从微软推出了LightGBM,其在工业界表现的越来越好,很多比赛的Top选手也掏出LightGBM上分.所以,本文介绍下LightGBM的特别之处. LightGBM ...

  10. LINQ学习笔记——(1)添加扩展方法

    目的:  对已存在类型的行为进行扩展 注意事项:    扩展方法是一种特殊的静态方法    扩展方法必须在静态类中定义    扩展方法的优先级低于同名的类方法    扩展方法只在特定的命名空间内有效 ...