题目链接

BZOJ1558

题解

等差数列,当然是差分一下

差分值相同的连续位置形成等差数列,我们所选的两个等差数列之间可以有一个位置舍弃

例如:

\(1 \; 2 \; 3 \; 6 \; 8 \; 10\)

差分后是

\(1\; 1\; 3 \; 2\; 2\)

左边两个\(1\)形成等差,右边两个\(2\)形成等差,中间的\(3\)位于两个等差数列的边界,可以舍弃

所以现在问题就转化为了:

在一个区间中选定若干个相同数字的区间,区间之间可以有一个空隙,求最少的区间数

可以用线段树维护

每个节点储存一下左右端点的值,以及\(c[2][2]\)表示左右端点选与不选时的答案

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define cls(s) memset(s,0,sizeof(s))
#define LL long long int
#define ls (u << 1)
#define rs (u << 1 | 1)
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,Q,A[maxn],D[maxn];
LL cnt[maxn << 2][2][2],add[maxn << 2],rn[maxn << 2],ln[maxn << 2];
void pd(int u){
if (add[u]){
ln[ls] += add[u]; rn[ls] += add[u]; add[ls] += add[u];
ln[rs] += add[u]; rn[rs] += add[u]; add[rs] += add[u];
add[u] = 0;
}
}
void pup(int u){
ln[u] = ln[ls]; rn[u] = rn[rs];
if (rn[ls] == ln[rs]){
cnt[u][0][0] = cnt[ls][0][1] + cnt[rs][1][0] - 1;
cnt[u][0][1] = cnt[ls][0][1] + cnt[rs][1][1] - 1;
cnt[u][1][0] = cnt[ls][1][1] + cnt[rs][1][0] - 1;
cnt[u][1][1] = cnt[ls][1][1] + cnt[rs][1][1] - 1;
}
else {
cnt[u][0][0] = min(cnt[ls][0][0] + cnt[rs][1][0],cnt[ls][0][1] + cnt[rs][0][0]);
cnt[u][0][1] = min(cnt[ls][0][1] + cnt[rs][0][1],cnt[ls][0][0] + cnt[rs][1][1]);
cnt[u][1][0] = min(cnt[ls][1][1] + cnt[rs][0][0],cnt[ls][1][0] + cnt[rs][1][0]);
cnt[u][1][1] = min(cnt[ls][1][1] + cnt[rs][0][1],cnt[ls][1][0] + cnt[rs][1][1]);
}
}
void build(int u,int l,int r){
if (l == r){
cnt[u][1][1] = 1; cnt[u][0][1] = cnt[u][1][0] = 1; cnt[u][0][0] = 0;
ln[u] = rn[u] = D[l];
return;
}
int mid = l + r >> 1;
build(ls,l,mid);
build(rs,mid + 1,r);
pup(u);
}
void modify(int u,int l,int r,int L,int R,int v){
if (l >= L && r <= R){
ln[u] += v; rn[u] += v; add[u] += v;
return;
}
pd(u);
int mid = l + r >> 1;
if (mid >= L) modify(ls,l,mid,L,R,v);
if (mid < R) modify(rs,mid + 1,r,L,R,v);
pup(u);
}
struct node{
LL ln,rn,cnt[2][2];
node(){}
node(LL a,LL b,LL c[][2]):ln(a),rn(b) {
cnt[0][0] = c[0][0]; cnt[0][1] = c[0][1];
cnt[1][0] = c[1][0]; cnt[1][1] = c[1][1];
}
};
node query(int u,int l,int r,int L,int R){
if (l >= L && r <= R) return node(ln[u],rn[u],cnt[u]);
pd(u);
int mid = l + r >> 1;
if (mid >= R) return query(ls,l,mid,L,R);
if (mid < L) return query(rs,mid + 1,r,L,R);
node a = query(ls,l,mid,L,R),b = query(rs,mid + 1,r,L,R);
LL c[2][2];
if (a.rn == b.ln){
c[0][0] = a.cnt[0][1] + b.cnt[1][0] - 1;
c[0][1] = a.cnt[0][1] + b.cnt[1][1] - 1;
c[1][0] = a.cnt[1][1] + b.cnt[1][0] - 1;
c[1][1] = a.cnt[1][1] + b.cnt[1][1] - 1;
}
else {
c[0][0] = min(a.cnt[0][0] + b.cnt[1][0],a.cnt[0][1] + b.cnt[0][0]);
c[0][1] = min(a.cnt[0][1] + b.cnt[0][1],a.cnt[0][0] + b.cnt[1][1]);
c[1][0] = min(a.cnt[1][1] + b.cnt[0][0],a.cnt[1][0] + b.cnt[1][0]);
c[1][1] = min(a.cnt[1][1] + b.cnt[0][1],a.cnt[1][0] + b.cnt[1][1]);
}
return node(a.ln,b.rn,c);
}
int main(){
n = read();
REP(i,n) A[i] = read(),D[i] = A[i] - A[i - 1];
build(1,1,n);
Q = read();
char opt; LL l,r,a,b;
while (Q--){
opt = getchar(); while (opt != 'A' && opt != 'B') opt = getchar();
l = read(); r = read();
if (opt == 'A'){
a = read(); b = read();
modify(1,1,n,l,l,a);
if (l < r) modify(1,1,n,l + 1,r,b);
if (r < n) modify(1,1,n,r + 1,r + 1,-(a + (r - l) * b));
}
else {
if (l == r) puts("1");
else{
node u = query(1,1,n,l + 1,r);
printf("%lld\n",u.cnt[1][1]);
}
}
}
return 0;
}

BZOJ1558 [JSOI2009]等差数列 【线段树】的更多相关文章

  1. BZOJ.1558.[JSOI2009]等差数列(线段树 差分)

    BZOJ 洛谷 首先可以把原序列\(A_i\)转化成差分序列\(B_i\)去做. 这样对于区间加一个等差数列\((l,r,a_0,d)\),就可以转化为\(B_{l-1}\)+=\(a_0\),\(B ...

  2. 洛谷P4243/bzoj1558 [JSOI2009]等差数列(线段树维护差分+爆炸恶心的合并)

    题面 首先感谢这篇题解,是思路来源 看到等差数列,就会想到差分,又有区间加,很容易想到线段树维护差分.再注意点细节,\(A\)操作完美解决 然后就是爆炸恶心的\(B\)操作,之前看一堆题解的解释都不怎 ...

  3. [bzoj1558][JSOI2009]等差数列

    题目:给定n个数,m个操作,每次给一段区间加一个等差数列或者询问一段区间至少要用多少个等差数列来表示.$n,m\leqslant 10^{5}$ 题解:老套路,维护差分数组,修改操作变成了两个单点加和 ...

  4. [BZOJ4373]算术天才⑨与等差数列(线段树)

    [l,r]中所有数排序后能构成公差为k的等差数列,当且仅当: 1.区间中最大数-最小数=k*(r-l) 2.k能整除区间中任意两个相邻数之差,即k | gcd(a[l+1]-a[l],a[l+2]-a ...

  5. 【BZOJ4373】算术天才⑨与等差数列 [线段树]

    算术天才⑨与等差数列 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 算术天才⑨非常喜欢和等 ...

  6. BZOJ 4373 算术天才⑨与等差数列 线段树+set(恶心死我了)

    mdzz,这道题重构了4遍,花了一个晚上... 满足等差数列的条件: 1. 假设min是区间最小值,max是区间最大值,那么 max-min+k(r−l) 2. 区间相邻两个数之差的绝对值的gcd=k ...

  7. 【BZOJ4373】算术天才⑨与等差数列 线段树+set

    [BZOJ4373]算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍.有一天,他给了你一个长度为n的序列,其中第i个数为a[i].他想考考你,每次他会给出询问l,r,k, ...

  8. BZOJ 4373算术天才⑨与等差数列(线段树)

    题意:给你一个长度为n的序列,有m个操作,写一个程序支持以下两个操作: 1. 修改一个值 2. 给出三个数l,r,k, 询问:如果把区间[l,r]的数从小到大排序,能否形成公差为k的等差数列. n,m ...

  9. bzoj 4373 算术天才⑨与等差数列——线段树+set

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 能形成公差为k的等差数列的条件:mx-mn=k*(r-l) && 差分 ...

随机推荐

  1. Centos7安装FastDFS

    离线安装包准备: 将相关的安装包上传到 /usr/local 目录,安装包下载 并解压到当前目录 1.安装 gcc yum install -y gcc gcc-c++ 2.安装 perl yum i ...

  2. C语言Windows程序开发—TextOut函数介绍【第02天】

    (一)TextOut函数的参数介绍: BOOL TextOut ( //如果函数调用成功,返回TRUE,否则,返回FALSE HDC hdc, //用于显示字符串的控件ID int nXStart, ...

  3. html中显示指数、底数

    在web前端开发中,经常要显示指数.底数,比如x2,loga,我们可以使用span标签,通过控制标签内字体大小,对齐方式来实现想要的效果.代码如下 <table> <tr> & ...

  4. Android面试收集录 网络与加密

    1.创建Socket对象需要至少指定哪些信息? IP(或域名)和端口号 Socket socket=new Socket("www.baidu.com",80); 2.如何使用So ...

  5. 【转】Python 数据库连接池

    python编程中可以使用pymysql进行数据库连接及增删改查操作,但每次连接mysql请求时,都是独立的去请求访问,比较浪费资源,而且访问数量达到一定数量时,对mysql的性能会产生较大的影响.因 ...

  6. Unity 对象的批处理

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/52813834 作者:car ...

  7. 初步学习pg_control文件之六

    接前文:初步学习pg_control文件之五 ,DB_IN_ARCHIVE_RECOVERY何时出现? 看代码:如果recovery.conf文件存在,则返回 InArchiveRecovery = ...

  8. js 邮箱和手机号码验证

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. 使用Entity Framework出错

          在使用的过程中,写了一个例子,结果就报错说      The context cannot be used while the model is being created.      在 ...

  10. [网站公告]18:07-18:20阿里云SLB故障造成网站不能正常访问

    (注:由于阿里云SLB管理控制台监控数据不准,实际故障时间是18:07-18:20.) 17:55-18:2018:07-18:20,我们使用的阿里云SLB(负载均衡)中有3台出现突发故障,造成全站无 ...