TSP问题之状压dp法
首先,我们先来认识一下什么叫做TSP问题
旅行商问题,即TSP问题(Traveling Salesman Problem)又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。假设这个n很小,我们就可以使用状态压缩的方法求解,在一般的TSP问题中的用状压求解的题目,我们可以定义一个dp数组,dp[i][v],其中v表示一个集合,dp[i][v]表示到i这个点经过v中所有点的最小路径.
假设我们从s出发,最后再回到s
1.那么最开始,只有dp[s][{s}]=0,其余均等于inf
2.其他情况下,dp[i][state]=min(dp[i][state],dp[j][state']+c[j][i])
3.最后我们的结果,ans=min(ans,dp[i][state]+c[i][s]),因为我们要求的是一个环的最短路,所以还要加上回来的距离
那么还有一个问题,我们要如何存下这个集合,当然是用状态压缩的方法,s|1<<(k),表示由原来的状态s转移到加上k这个点的状态,那么就很好求解了对吧
题目大意:多组数据,给定n,一个起点0,以及这n+1个点之间的距离,求从起点出发经过每个点一次,再回到起点的最短距离.注意到n<=10,我们可以使用状压dp来做
思路:首先先预处理出这n+1个点之间的最短距离,因为n很小,我们可以使用floyed来处理.然后就是套我上面的说的三种情况,具体可以代码中的注解
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<cstring>
#define in(i) (i=read())
using namespace std;
const int inf=0x3f3f3f;
int read()
{
int ans=,f=;
char i=getchar();
while(i<''||i>''){if(i=='-') f=-; i=getchar();}
while(i>=''&&i<='') {ans=(ans<<)+(ans<<)+i-'';i=getchar();}
return ans*f;
}
int n;
int dp[][<<];
int mp[][];
void floyed()
{
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
mp[i][j]=min(mp[i][j],mp[i][k]+mp[k][j]);
return;
}
int main()
{
while() {
int ans=inf; in(n);
if(!n) break;
n++;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
in(mp[i][j]);//输入每两个点之间的距离
floyed();//求出n+1个点两两之间的最短距离
memset(dp,inf,sizeof(dp));
dp[][]=;//默认以1为起点,集合内最开始状态为1<<(1-1)=1,所以dp[1][1]=0
for(int i=;i<(<<n);i++)//枚举状态
for(int j=;j<=n;j++)//枚举每个点
if((i&(<<(j-)))!=)//判断这个是否在集合中
for(int k=;k<=n;k++)//如果不在就以它为中转点转移
if(!(i&(<<(k-))))
dp[k][i|(<<(k-))]=min(dp[k][i|(<<(k-))],dp[j][i]+mp[j][k]);//状态转移方程
for(int i=;i<=n;i++)
ans=min(ans,dp[i][(<<n)-]+mp[i][]);//还要回来才是一个环,因此还要加上到起点的距离
cout<<ans<<endl;
}
}
上述代码在洛谷应该是会T一个点的,因为重复使用位运算速度是会变慢的,所以我们可以提前处理出每个点左移多少位之后的数组,以及使用系统自带函数min也是很慢的\
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<cstring>
#define MIN(a,b) (a)<(b)?(a):(b)
#define in(i) (i=read())
using namespace std;
const int inf=0x3f3f3f;
int read()
{
int ans=,f=;
char i=getchar();
while(i<''||i>'') {if(i=='-') f=-; i=getchar();}
while(i>=''&&i<='') { ans=(ans<<)+(ans<<)+i-'';i=getchar();}
return ans*f;
}
int dp[<<][],mp[][],st[];
int n;
int main()
{
in(n);
int ans=inf;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
in(mp[i][j]);
memset(dp,inf,sizeof(dp));
dp[][]=; st[]=;
for(int i=;i<=;i++) st[i]=st[i-]<<;//预处理
for(int i=;i<st[n];i++)
for(int j=;j<=n;j++)
if( dp[i][j]!=dp[][] && i&st[j-])
for(int k=;k<=n;k++)
if(!(i&st[k-]))
dp[i|st[k-]][k]=MIN(dp[i|st[k-]][k],dp[i][j]+mp[j][k]);
for(int i=;i<=n;i++)
ans=MIN(ans,dp[st[n]-][i]+mp[i][]);
printf("%d\n",ans);
return ;
}
TSP问题之状压dp法的更多相关文章
- HDU 5418 Victor and World (可重复走的TSP问题,状压dp)
题意: 每个点都可以走多次的TSP问题:有n个点(n<=16),从点1出发,经过其他所有点至少1次,并回到原点1,使得路程最短. 思路: 给了很多重边,选最小的留下即可.任意点可能无法直接到达, ...
- POJ 3311 Hie with the Pie (状压DP)
题意: 每个点都可以走多次的TSP问题:有n个点(n<=11),从点1出发,经过其他所有点至少1次,并回到原点1,使得路程最短是多少? 思路: 同HDU 5418 VICTOR AND WORL ...
- poj3311 TSP经典状压dp(Traveling Saleman Problem)
题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...
- HDU 5067 Harry And Dig Machine(状压DP)(TSP问题)
题目地址:pid=5067">HDU 5067 经典的TSP旅行商问题模型. 状压DP. 先分别预处理出来每两个石子堆的距离.然后将题目转化成10个城市每一个城市至少经过一次的最短时间 ...
- POJ3311 Hie with the Pie 【状压dp/TSP问题】
题目链接:http://poj.org/problem?id=3311 Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total ...
- 状压DP 从TSP问题开始入门哦
一开始学状压DP难以理解,后来从TSP开始,终于入门了nice!!!! 旅行商问题 : 给定n个城市和两两相互的距离 ,求一条路径经过所有城市,并且路径达到最下仅限于; 朴树想法: 做n个城 ...
- Hie with the Pie(POJ3311+floyd+状压dp+TSP问题dp解法)
题目链接:http://poj.org/problem?id=3311 题目: 题意:n个城市,每两个城市间都存在距离,问你恰好经过所有城市一遍,最后回到起点(0)的最短距离. 思路:我们首先用flo ...
- DAG求最短路--TSP变形--状压dp
DAG状压dp的一种 题目: $m$个城市,$n$张车票,第i张车票上的时间是$t_i$, 求从$a$到$b$的最短时间,如果无法到达则输出“impossible” 解法: 考虑状态:“现在在城市$v ...
- 状压DP小结
看了一个多星期状压DP,总算有点明白,大概可以分为两种:数据是在矩阵中的,数据是线性的,在矩阵中的一般就是排兵布阵这一种的,还有一种线性结构中给定条件让你求最大权值,比如求最大权值路线,TSP问题等, ...
随机推荐
- ADB工具的安装
1.Windows ADB工具下载地址: https://developer.android.google.cn/studio/releases/platform-tools ADB工具官网教程: h ...
- java泛型<? extends E> 有上限通配符与<? Super E>有上限通配符
通配符?,?表示占位,表明将来使用的时候在指明类型 <?>无限定的通配符, 是让泛型能够接受未知类型的数据 <? extends E> 有上限通配符,能够接受指定类及其子类类型 ...
- ionic打包apkFailed to execute shell command "input,keyevent,82"" on device: Error: adb: Command failed with exit code 137
错误代码如下 BUILD SUCCESSFUL in 12s 46 actionable tasks: 1 executed, 45 up-to-date Built the following ap ...
- WPF中的线程使用
原文:WPF中的线程使用 简介 但凡涉及到图形界面,往往的设计都是不支持或者不推荐使用多个线程操作界面内容.而且通常会有一个专门的线程调度器来处理任务线程和界面线程的问题.下面提供两个两个方案. 使用 ...
- 还原T4模板执行前的警告对话框
T4模板在保存的时候都会弹出个对话框,确认是否立即执行,大部分情况下我是不想立即执行的,所以一般都点Cancel,只有想执行的时候才点OK. 今天操作的时候不小心勾选了“Do not show thi ...
- Git初步
在多人参与开发的项目中,版本控制工具是必须的,网上有很多不错的教程,能简单使用就ok了,粘几篇教程,方便学习 首先我们要了解一些基本的概念,此处简单描述一下 (1)集中式版本控制系统: CVS.SVN ...
- SpringBoot:工厂模式实现定时任务可配置
pringBoot:工厂模式实现定时任务可配置 需要:使用springboot,实现定时任务可配置. 定时任务可在代码中写死,在配置文件中配置,这些都不能实现定时任务在服务器不重启的情况下可配置. 为 ...
- Python调用MYSQL,将文件名和路径批量入库用法小结
最近项目需要将大量的压缩文件导入到数据库中,所以开始总结用Python批量处理的办法,本次是首先将这些压缩文件的文件名提取出来,然后导入到数据库中. 由于涉及到路径的读取处理,所以方法有os模块和co ...
- 软工实践Beta冲刺(1/7)
队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 1.界面的修改与完善 展示GitHub当日代码/文档签入记 ...
- POI 导入 一直报400问题
排查过程:1.400一般都是参数或者请求不对,但是我这个情况是本地好用,只是服务器有问题,所以排除了传值的格式等问题. 2.服务器和本地网络隔离,所以没办法比较代码,分两次全量覆盖了html和js部分 ...