bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数
[Lydsy1711月赛]图的价值
Time Limit: 30 Sec Memory Limit: 256 MB
Submit: 245 Solved: 128
[Submit][Status][Discuss]
Description
Input
Output
输出一行一个整数,即答案对998244353取模的结果。
Sample Input
Sample Output
HINT
Source


因为第二类斯特林数m>n的时候为0,所以就优化成,k log k了,主要就是计算第二类斯特林数,后面组合那里因为最多k
所以就是n-k+1项的反过来乘就可以处理了,然后还有ksm一下。
#include<cstring>
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath> #define ll long long
#define mod 998244353
#define G 3
#define N 200007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,k,num,L,ans,inv;
int jc[N],jcf[N],ny[N];
int a[N<<],b[N<<],rev[N<<]; int ksm(int a,ll b)
{
int ans=;
while(b)
{
if (b&) ans=(ll)ans*a%mod;
a=(ll)a*a%mod;
b>>=;
}
return ans;
}
void init()
{
jc[]=jcf[]=ny[]=;
for (int i=;i<=k;i++)
jc[i]=(ll)jc[i-]*i%mod,ny[i]=ksm(i,mod-),ny[i]=(ll)ny[i]*ny[i-]%mod;
for (int i=;i<=k;i++)
a[i]=1ll*((i&)?(-):)*ny[i],b[i]=(ll)ksm(i,k)*ny[i]%mod;
for (int i=;i<=k;i++) jcf[i]=(ll)jcf[i-]*(n-i+)%mod;
for (num=;num<=k*;num<<=,L++);if (L) L--;
inv=ksm(num,mod-);
for (int i=;i<num;i++)
rev[i]=(rev[i>>]>>)|((i&)<<L);
}
void NTT(int *a,int flag)
{
for (int i=;i<num;i++)
if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=;i<num;i<<=)
{
int wn=ksm(G,(mod-)/(i<<));
for (int j=;j<num;j+=(i<<))
{
int w=;
for (int k=;k<i;w=(ll)w*wn%mod,k++)
{
int x=a[j+k],y=(ll)w*a[j+k+i]%mod;
a[j+k]=(x+y)%mod,a[j+k+i]=(x-y<)?x-y+mod:x-y;
}
}
}
if (flag==-)
{
for (int i=;i<num/;i++) swap(a[i],a[num-i]);
for (int i=;i<num;i++) a[i]=(ll)a[i]*inv%mod;
}
}
int main()
{
n=read(),k=read(),n--;
init();
NTT(a,),NTT(b,);
for (int i=;i<num;i++)
a[i]=(ll)a[i]*b[i]%mod;
NTT(a,-);
for (int i=;i<=min(n,k);i++)
(ans+=(ll)a[i]*jc[i]%mod*ksm(,n-i)%mod*jcf[i]%mod*ny[i]%mod)%=mod;
ans=(ll)ans*(n+)%mod*ksm(,(ll)(n-)*n/)%mod;
printf("%d\n",ans);
}
bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数的更多相关文章
- BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...
- BZOJ.5093.[Lydsy1711月赛]图的价值(NTT 斯特林数)
题目链接 对于单独一个点,我们枚举它的度数(有多少条边)来计算它的贡献:\[\sum_{i=0}^{n-1}i^kC_{n-1}^i2^{\frac{(n-2)(n-1)}{2}}\] 每个点是一样的 ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
- BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT
定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...
- BZOJ 5093: [Lydsy1711月赛]图的价值
第二类斯特林数模版题 需要一些组合数的小$ trick$ upd:这里更新了本题巧妙的$ O(k)$做法,虽然常数很大就是了 传送门:here 题意:求所有$ n$个节点的无重边自环图的价值和,定义一 ...
- bzoj5093:图的价值(第二类斯特林数+NTT)
传送门 首先,题目所求为\[n\times 2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 即对于每个点\(i\),枚举它的度数,然后计算方案.因为有\(n\) ...
- bzoj 5093 [Lydsy1711月赛]图的价值——第二类斯特林数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 不要见到组合数就拆! 枚举每个点的度数,则答案为 \( n*\sum\limits_{ ...
- BZOJ 5093[Lydsy1711月赛]图的价值 线性做法
博主曾更过一篇复杂度为$O( k· \log k)$的多项式做法在这里 惊闻本题有$ O(k)$的神仙做法,说起神仙我就想起了于是就去学习了一波 幂与第二类斯特林数 推导看这里 $$ x^k=\sum ...
- 【bzoj5093】[Lydsy1711月赛]图的价值(NTT+第二类斯特林数)
题意: 给定\(n\)个点,一个图的价值定义为所有点的度数的\(k\)次方之和. 现在计算所有\(n\)个点的简单无向图的价值之和. 思路: 将式子列出来: \[ \sum_{i=1}^n\sum_{ ...
随机推荐
- PAT (Basic Level) Practice (中文)1002
1002 写出这个数 (20 分) 读入一个正整数 n,计算其各位数字之和,用汉语拼音写出和的每一位数字. 输入格式: 每个测试输入包含 1 个测试用例,即给出自然数 n 的值.这里保证 n 小于 1 ...
- 006---Python基本数据类型--集合
集合 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px ...
- HDU 5530:Pipes Selection
题意: 给定长度为\(L\),元素总和为\(S\)的非负整数序列\(A\),对于每一个\(1 \leq i \leq S\),求出:所有满足\(\sum_{j=l}^rA_j=i\)的二元组\((l, ...
- Hadoop学习(四) FileSystem Shell命令详解
FileSystem Shell中大多数命令都和unix命令相同,只是两者之间的解释不同,如果你对unix命令有基本的了解,那么对于FileSystem Shell的命令,你将会感到很亲切. appe ...
- Linux:如何获取打开文件和文件描述符数量
一.linux的文件描述符 文件描述符(FD:file descriptors),也可以说是文件句柄,当某个程序打开文件时,内核返回相应的文件描述符,程序为了处理该文件必须引用此描述符.文件描述符是一 ...
- CentOS7 添加自定义系统服务案例
示例一: 执行脚本/root/project/systemctl/test.sh() ######################################################### ...
- java线程池技术
1.线程池的实现原理?简介: 多线程技术主要解决处理器单元内多个线程执行的问题,它可以显著减少处理器单元的闲置时间,增加处理器单元的吞吐能力.假设一个服务器完成一项任务所需时间为:T1 创建线程时间, ...
- spring boot 中文文档地址
spring boot 中文文档地址 http://oopsguy.com/documents/springboot-docs/1.5.4/index.html Spring Boot 参考指 ...
- mysql 导入CSV数据 [转]
转自: http://blog.chinaunix.net/uid-23284114-id-3196638.html MYSQL LOAD DATA INFILE命令可以把csv平面文件中的数据导 ...
- php之apc浅探
扩展编译: ./configure --enable-apc --with-php-config=/usr/local/php/bin/php-config --prefix=/usr/local/a ...