ORZ foreverlasting聚聚,QQ上问了他好久才会了这题(所以我们又聊了好久的Gal)

我们先来尝试推导一下\(S\)的性质,我们利用狄利克雷卷积来推:

\[2^\omega=I\ast|\mu|
\]

这个很好理解吧,考虑一下它的组合意义即可

然后两边同卷上\(I\)有:

\[2^\omega \ast I=I\ast I\ast |\mu|=d\ast |\mu|
\]

后面还是同样,考虑\(d\ast |\mu|\)的组合意义,一正一反的情况下其实就是\(d(n^2)\)

因此我们有了\(2^\omega\ast I=d(n^2)\),即\(S(n)=d(n^2)\)

那么显然\(S\)现在是个积性函数了,答案又是阶乘的形式,因此可以从\(n-1\)的答案推到\(n\)来

考虑一个非常暴力的过程,每次暴力分解质因数,复杂度大概是\(O(n\sqrt n)\)的

然后你只需要一台好一点的电脑我仿佛已经闻到了CPU的香气

然后考虑怎么优化这个过程,我们发现类似于某个套路,这种方法之所以慢是因为会出现不必要的枚举,因此我们只需要记录一下每个数的最小质因数,然后每次直接除去即可,顺带把贡献算一下

这样的复杂度很迷啊,加藤聚聚说是一个\(\log\)的,我感觉还要再少点,毕竟向下除至少去掉一个\(2\)

那么我们就可以很快的做掉这道题了(用自己的笔记本跑了2s就出来了)

#include<cstdio>
#define RI register int
#define CI const int&
using namespace std;
const int N=10000000,mod=1000000087;
int prime[N+5],cnt,mnp[N+5],bkt[N+5],inv[(N<<1)+5],ret=1,ans;
#define Pi prime[j]
inline void init(void)
{
RI i,j; for (mnp[1]=1,i=2;i<=N;++i)
{
if (!mnp[i]) mnp[i]=i,prime[++cnt]=i;
for (j=1;j<=cnt&&1LL*i*Pi<=N;++j)
{
mnp[i*Pi]=Pi; if (i%Pi==0) break;
}
}
for (inv[0]=inv[1]=1,i=2;i<=(N<<1)+1;++i)
inv[i]=1LL*inv[mod%i]*(mod-mod/i)%mod;
}
#undef Pi
inline void inc(int& x,CI y)
{
if ((x+=y)>=mod) x-=mod;
}
inline int sum(CI x,CI y)
{
int t=x+y; return t>=mod?t-mod:t;
}
int main()
{
freopen("ans.txt","w",stdout);
init(); for (RI i=2;i<=N;++i)
{
ret=1LL*ret*inv[bkt[i]+1]%mod; inc(bkt[i],2); ret=1LL*ret*(bkt[i]+1)%mod;
for (int x=i;x!=mnp[x];x/=mnp[x])
{
if (x/mnp[x]==mnp[x])
{
ret=1LL*ret*inv[bkt[x]+1]%mod*inv[bkt[mnp[x]]+1]%mod;
inc(bkt[mnp[x]],sum(bkt[x],bkt[x]));
ret=1LL*ret*(bkt[mnp[x]]+1)%mod; bkt[x]=0;
} else
{
ret=1LL*ret*inv[bkt[x]+1]%mod*inv[bkt[mnp[x]]+1]%mod*inv[bkt[x/mnp[x]]+1]%mod;
inc(bkt[mnp[x]],bkt[x]); inc(bkt[x/mnp[x]],bkt[x]);
ret=1LL*ret*(bkt[mnp[x]]+1)%mod*(bkt[x/mnp[x]]+1)%mod; bkt[x]=0;
}
}
inc(ans,ret);
}
return printf("%d",ans),0;
}

Project Euler Problem 675的更多相关文章

  1. Project Euler Problem 10

    Summation of primes Problem 10 The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of ...

  2. Project Euler problem 62

    题目的大意很简单 做法的话. 我们就枚举1~10000的数的立方, 然后把这个立方中的有序重新排列,生成一个字符串s, 然后对于那些符合题目要求的肯定是生成同一个字符串的. 然后就可以用map来搞了 ...

  3. Project Euler problem 63

    这题略水啊 首先观察一下. 10 ^ x次方肯定是x + 1位的 所以底数肯定小于10的 那么我们就枚举1~9为底数 然后枚举幂级数就行了,直至不满足题目中的条件即可break cnt = 0 for ...

  4. Project Euler problem 61

    题意很明了. 然后我大概的做法就是暴搜了 先把每个几边形数中四位数的处理出来. 然后我就DFS回溯着找就行了. 比较简单吧. #include <cstdio> #include < ...

  5. Project Euler problem 68

    题意须要注意的一点就是, 序列是从外层最小的那个位置顺时针转一圈得来的.而且要求10在内圈 所以,这题暴力的话,假定最上面那个点一定是第一个点,算下和更新下即可. #include <iostr ...

  6. Project Euler Problem (1~10)

    1.If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. Th ...

  7. Project Euler Problem 26-Reciprocal cycles

    看样子,51nod 1035 最长的循环节 这道题应该是从pe搬过去的. 详解见论文的(二)那部分:http://web.math.sinica.edu.tw/math_media/d253/2531 ...

  8. Project Euler Problem 24-Lexicographic permutations

    全排列的生成,c++的next_permutation是O(n)生成全排列的.具体的O(n)生成全排列的算法,在 布鲁迪 的那本组合数学中有讲解(课本之外,我就看过这一本组合数学),冯速老师翻译的,具 ...

  9. Project Euler Problem 23-Non-abundant sums

    直接暴力搞就行,优化的地方应该还是计算因子和那里,优化方法在这里:http://www.cnblogs.com/guoyongheng/p/7780345.html 这题真坑,能被写成两个相同盈数之和 ...

随机推荐

  1. CF750G New Year and Binary Tree Paths(DP)

    神仙题.为啥我第一眼看上去以为是个普及题 路径有两种,第一种是从 LCA 一边下去的,第二种是从 LCA 两边都下去了的. 先考虑第一种. 先枚举路径长度 \(h\). 当 LCA 编号是 \(x\) ...

  2. 基于python的selenium常用操作方法(2)

    9 多表单切换 在Web应用中经常会遇到frame/iframe表单嵌套页面的应用,WebDriver只能在一个页面上对元素识别与定位,对于frame/iframe表单内嵌页面上的元素无法直接定位.这 ...

  3. Linux 下编写一个 PHP 扩展

        假设需求 开发一个叫做 helloWord 的扩展. 扩展里有一个函数,helloWord(). echo helloWord('Tom'); //返回:Hello World: Tom 本地 ...

  4. pandas 学习 第1篇:pandas基础 - 数据结构和数据类型

    pandas是基于NumPy构建的模块,含有使数据分析更快更简单的操作工具和数据结构,是数据分析必不可少的五个包之一.pandas包含序列Series和数据框DataFrame两种最主要数据结构,索引 ...

  5. 图解servlet

    You can see the following illustration to better understand the lifecycle of the Servlet. When the r ...

  6. .net core 的 aop 实现方法汇总

    decorator 不借助第三方DI容器,通过装饰模式通过内置的DI容器实现 https://medium.com/@willie.tetlow/net-core-dependency-injecti ...

  7. Spark Streaming Listener 监控批次处理延迟进行告警

    概述 StreamingListener 是针对spark streaming的各个阶段的事件监听机制. StreamingListener接口 //需要监听spark streaming中各个阶段的 ...

  8. oracle学习笔记(十) 查询练习(一)

    查询练习一 表创建 create table employee as select * from soctt.emp ; --记得授权 sysdba用户登录 grant select on scott ...

  9. Java开发桌面程序学习(八)——启动浏览器或者打开资源管理器操作与hyperlink超链接的使用

    启动浏览器或者打开资源管理器 启动浏览器 java1.6版本以上,Desktop Desktop.getDesktop().browse(new URI("www.cnblogs.com/k ...

  10. sqlite3数据库最大可以是多大?可以存放多少数据?读写性能怎么样?

    sqlite是款不错的数据库,使用方便,不需要事先安装软件,事先建表.很多人担心它的性能和数据存储量问题. 比如有的网友问:Sqlite数据库最大可以多大呀?会不会像acc数据库那样,几十MB就暴掉了 ...