通常为了模型能更好的收敛,随着训练的进行,希望能够减小学习率,以使得模型能够更好地收敛,找到loss最低的那个点.

tensorflow中提供了多种学习率的调整方式.在https://www.tensorflow.org/api_docs/python/tf/compat/v1/train搜索decay.可以看到有多种学习率的衰减策略.

  • cosine_decay
  • exponential_decay
  • inverse_time_decay
  • linear_cosine_decay
  • natural_exp_decay
  • noisy_linear_cosine_decay
  • polynomial_decay

本文介绍两种学习率衰减策略,指数衰减和多项式衰减.

tf.compat.v1.train.exponential_decay(
learning_rate,
global_step,
decay_steps,
decay_rate,
staircase=False,
name=None
)

learning_rate 初始学习率

global_step 当前总共训练多少个迭代

decay_steps 每xxx steps后变更一次学习率

decay_rate 用以计算变更后的学习率

staircase: global_step/decay_steps的结果是float型还是向下取整

学习率的计算公式为:decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)

我们用一段测试代码来绘制一下学习率的变化情况.

#coding=utf-8
import matplotlib.pyplot as plt
import tensorflow as tf x=[]
y=[]
N = 200 #总共训练200个迭代 num_epoch = tf.Variable(0, name='global_step', trainable=False)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for num_epoch in range(N):
##初始学习率0.5,每10个迭代更新一次学习率.
learing_rate_decay = tf.train.exponential_decay(learning_rate=0.5, global_step=num_epoch, decay_steps=10, decay_rate=0.9, staircase=False)
learning_rate = sess.run([learing_rate_decay])
y.append(learning_rate) #print(y) x = range(N)
fig = plt.figure()
ax.set_xlabel('step')
ax.set_ylabel('learing rate')
plt.plot(x, y, 'r', linewidth=2)
plt.show()

结果如图:

  • 多项式衰减
tf.compat.v1.train.polynomial_decay(
learning_rate,
global_step,
decay_steps,
end_learning_rate=0.0001,
power=1.0,
cycle=False,
name=None
)

设定一个初始学习率,一个终止学习率,然后线性衰减.cycle控制衰减到end_learning_rate后是否保持这个最小学习率不变,还是循环往复. 过小的学习率会导致收敛到局部最优解,循环往复可以一定程度上避免这个问题.

根据cycle是否为true,其计算方式不同,如下:

#coding=utf-8
import matplotlib.pyplot as plt
import tensorflow as tf x=[]
y=[]
z=[]
N = 200 #总共训练200个迭代 num_epoch = tf.Variable(0, name='global_step', trainable=False)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for num_epoch in range(N):
##初始学习率0.5,每10个迭代更新一次学习率.
learing_rate_decay = tf.train.polynomial_decay(learning_rate=0.5, global_step=num_epoch, decay_steps=10, end_learning_rate=0.0001, cycle=False)
learning_rate = sess.run([learing_rate_decay])
y.append(learning_rate) learing_rate_decay2 = tf.train.polynomial_decay(learning_rate=0.5, global_step=num_epoch, decay_steps=10, end_learning_rate=0.0001, cycle=True)
learning_rate2 = sess.run([learing_rate_decay2])
z.append(learning_rate2)
#print(y) x = range(N)
fig = plt.figure()
ax.set_xlabel('step')
ax.set_ylabel('learing rate')
plt.plot(x, y, 'r', linewidth=2)
plt.plot(x, z, 'g', linewidth=2)
plt.show()

绘图结果如下:



cycle为false时对应红线,学习率下降到0.0001后不再下降. cycle=true时,下降到0.0001后再突变到一个更大的值,在继续衰减,循环往复.

在代码里,通常通过参数去控制不同的学习率策略,例如

def _configure_learning_rate(num_samples_per_epoch, global_step):
"""Configures the learning rate. Args:
num_samples_per_epoch: The number of samples in each epoch of training.
global_step: The global_step tensor. Returns:
A `Tensor` representing the learning rate. Raises:
ValueError: if
"""
# Note: when num_clones is > 1, this will actually have each clone to go
# over each epoch FLAGS.num_epochs_per_decay times. This is different
# behavior from sync replicas and is expected to produce different results.
decay_steps = int(num_samples_per_epoch * FLAGS.num_epochs_per_decay /
FLAGS.batch_size) if FLAGS.sync_replicas:
decay_steps /= FLAGS.replicas_to_aggregate if FLAGS.learning_rate_decay_type == 'exponential':
return tf.train.exponential_decay(FLAGS.learning_rate,
global_step,
decay_steps,
FLAGS.learning_rate_decay_factor,
staircase=True,
name='exponential_decay_learning_rate')
elif FLAGS.learning_rate_decay_type == 'fixed':
return tf.constant(FLAGS.learning_rate, name='fixed_learning_rate')
elif FLAGS.learning_rate_decay_type == 'polynomial':
return tf.train.polynomial_decay(FLAGS.learning_rate,
global_step,
decay_steps,
FLAGS.end_learning_rate,
power=1.0,
cycle=False,
name='polynomial_decay_learning_rate')
else:
raise ValueError('learning_rate_decay_type [%s] was not recognized' %
FLAGS.learning_rate_decay_type)

推荐一篇:https://blog.csdn.net/dcrmg/article/details/80017200 对各种学习率衰减策略描述的很详细.并且都有配图,可以很直观地看到各种衰减策略下学习率变换情况.

tensorflow中的学习率调整策略的更多相关文章

  1. tensorflow中常用学习率更新策略

    神经网络训练过程中,根据每batch训练数据前向传播的结果,计算损失函数,再由损失函数根据梯度下降法更新每一个网络参数,在参数更新过程中使用到一个学习率(learning rate),用来定义每次参数 ...

  2. 【转载】 PyTorch学习之六个学习率调整策略

    原文地址: https://blog.csdn.net/shanglianlm/article/details/85143614 ----------------------------------- ...

  3. 深度学习训练过程中的学习率衰减策略及pytorch实现

    学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoc ...

  4. 史上最全学习率调整策略lr_scheduler

    学习率是深度学习训练中至关重要的参数,很多时候一个合适的学习率才能发挥出模型的较大潜力.所以学习率调整策略同样至关重要,这篇博客介绍一下Pytorch中常见的学习率调整方法. import torch ...

  5. 【转载】 Pytorch中的学习率调整lr_scheduler,ReduceLROnPlateau

    原文地址: https://blog.csdn.net/happyday_d/article/details/85267561 ------------------------------------ ...

  6. PyTorch学习之六个学习率调整策略

    PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现.PyTorch提供的学习率调整策略分为三大类,分别是 有序调整:等间隔调整(Step),按需调整学习率(Mul ...

  7. TensorFlow中设置学习率的方式

    目录 1. 指数衰减 2. 分段常数衰减 3. 自然指数衰减 4. 多项式衰减 5. 倒数衰减 6. 余弦衰减 6.1 标准余弦衰减 6.2 重启余弦衰减 6.3 线性余弦噪声 6.4 噪声余弦衰减 ...

  8. pytorch中的学习率调整函数

    参考:https://pytorch.org/docs/master/optim.html#how-to-adjust-learning-rate torch.optim.lr_scheduler提供 ...

  9. 深度学习---1cycle策略:实践中的学习率设定应该是先增再降

    深度学习---1cycle策略:实践中的学习率设定应该是先增再降 本文转载自机器之心Pro,以作为该段时间的学习记录 深度模型中的学习率及其相关参数是最重要也是最难控制的超参数,本文将介绍 Lesli ...

随机推荐

  1. Jenkins节点配置

    1.系统管理---configure Global Security(全局安全设置)---Tcp port for inbound agents---指定端口---服务器防火墙中开放此端口 点击 ag ...

  2. Python_函数做字典的值

    当需要用到3个及以上的if...elif...else时就要考虑该方法进行简化 通过将函数名称当做字典的值,利用字典的关键字查询,可以快速定位函数,进行执行 [场景]用户查询信息,输入fn查询,执行对 ...

  3. 代码审计-凡诺CMS 2.1文件包含漏洞

    0x01代码审计 后台账号密码: admin admin 安装好了是这样的 漏洞文件:/channel.php if (ism()) { include($dir.$t_mpath.$c_mcmode ...

  4. 【css】CSS设置文字不能被选中

    CSS设置文字不能被选中 /*设置文字不能被选中 以下为css样式*/ -webkit-user-select:none; -moz-user-select:none; -ms-user-select ...

  5. 详解AJAX工作原理以及实例讲解(通俗易懂)

    什么是 AJAX ? AJAX = 异步 JavaScript 和 XML. AJAX 是一种用于创建快速动态网页的技术. 通过在后台与服务器进行少量数据交换,AJAX 可以使网页实现异步更新.这意味 ...

  6. Python3+RobotFramework+pycharm环境搭建

    我的环境为 python3.6.5+pycharm 2019.1.3+robotframework3.1.2 1.安装python3.x 略 之后在cmd下执行:pip  install  robot ...

  7. C# 求Π Π/4=1-1/3+1/5-1/7+......+1/(2*n-3)-1/(2*n-1); (n=2000)

    double a = 0.0;//最终Π的结果 double类型 int n; for (n = 1; n <= 2000; n++) { if (n % 2 == 1) { a += 1.0 ...

  8. Vue学习系列(三)——基本指令

    前言 在上一篇中,我们已经对组件有了更加进一步的认识,从组件的创建构造器到组件的组成,进而到组件的使用,.从组件的基本使用.组件属性,以及自定义事件实现父子通讯和巧妙运用插槽slot分发内容,进一步的 ...

  9. SVG系列 - 基础

    标题为SVG基础,但是过于基础的东西就不再熬述啦,可以参考几个学习网址: SVG参考手册:http://www.runoob.com/svg/svg-reference.html MDN SVG:ht ...

  10. Leetcode(6)Z字形变换

    Leetcode(6)Z字形变换 [题目表述]: 将一个给定字符串根据给定的行数,以从上往下.从左到右进行 Z 字形排列. 比如输入字符串为 "LEETCODEISHIRING" ...