tensorflow word2vec详解
maybe_download
下载text8.zip.可以手工下载下来.然后指定text8.zip的路径.
read_data
解压text8.zip,把数据读入到data中. data是一个长数组,保存了所有单词.单词之间用空格分开.text8.zip解决后是一个文本文件,这个文本文件的内容非常简单只有字母组成的单词,单词之间用空格分开,没有别的字符.
build_dataset
将出现次数最多的前50000个词和出现的次数放到数据结构count中.count是个dict,每个元素是个list,list的第0个元素是单词,list的第1个元素是出现次数.dictionary的key是单词,value是单词对应的一个编号. data和words相对对应,words是个单词的list,data是个编号的list,惟一要注意的地方是当单词不在最常用的50000个时,编号为0. 最后把所有不常用的单词(不在top 50000中)记为UNK,出现资料为所有不常用的单词之和.reverse_dictionary也是一个dict,只是把dictionary的key和value反过来了.
generate_batch
作用是给点一个单词,找到它前面和后面的单词.batch_size=8单词是8个词作为一个句子.skip_window=2,表示一个单词的前2个和后2个单词可能当成它周围的单词.num_skips=4表示在每个单词的前后一共选4个单词,认为这4个单词是它周围的单词.返回值batch相当于基准单词,labels相当于基准单词周围的单词.
词向量的构造
embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
构造了一个结构为(50000, 128)的词向量.
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
每次从词向量中取出train_inputs去训练.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
把词向量化为单位向量.
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) # 取出16个 (16*128)
similarity = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True) # 16*50000 选出的16个单词和50000个词的相似度
先从所有单位词向量中选出16个词向量,结构为(16*128). valid_embeddings乘以normalized_embeddings的转置(128,50000)后,得到一个结构为(16,50000)的矩阵.表示选出的16个单词和50000个单词的相似度.
top n相似度
sim = similarity.eval() # 16*50000
for i in xrange(valid_size): # 0...15
valid_word = reverse_dictionary[valid_examples[i]] # 选16个单词
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k + 1] # 相似度最大的是它自己,所以[1,top_k+1],nearest保存最大相似度的索引
log_str = "Nearest to %s:" % valid_word
for k in xrange(top_k):
close_word = reverse_dictionary[nearest[k]] # 由索引找到单词
log_str = "%s %s," % (log_str, close_word)
print(log_str)
tensorflow word2vec详解的更多相关文章
- Word2Vec详解
Word2Vec详解 word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练:其次,该工具得到的训练结果--词向量(word embedding),可以很好地度量词与词之间的相似性.随着 ...
- 机器学习:gensim之Word2Vec 详解
一 前言 Word2Vec是同上一篇提及的PageRank一样,都是Google的工程师和机器学习专家所提出的的:在学习这些算法.模型的时候,最好优先去看Google提出者的原汁Paper和Proje ...
- TensorFlow 安装详解
摘要: 原创出处:www.bysocket.com 泥瓦匠BYSocket 希望转载,保留摘要,谢谢! 『不要把手段当成目标 — <一个瑜伽行者的自传>』 本文提纲 1. 机器学习 2 ...
- NLP之——Word2Vec详解
2013年,Google开源了一款用于词向量计算的工具--word2vec,引起了工业界和学术界的关注.首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练:其次,该工具得到的训 ...
- word2vec详解与实战
有那么一句话 不懂word2vec,就别说自己是研究人工智能->机器学习->自然语言处理(NLP)->文本挖掘的 所以接下来我就从头至尾的详细讲解一下word2vec这个东西. 简要 ...
- Tensorflow BatchNormalization详解:4_使用tf.nn.batch_normalization函数实现Batch Normalization操作
使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearnin ...
- Tensorflow BatchNormalization详解:3_使用tf.layers高级函数来构建带有BatchNormalization的神经网络
Batch Normalization: 使用tf.layers高级函数来构建带有Batch Normalization的神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴 ...
- Tensorflow BatchNormalization详解:2_使用tf.layers高级函数来构建神经网络
Batch Normalization: 使用tf.layers高级函数来构建神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔 ...
- TensorFlow分布式详解
每次 TensorFlow 运算都被描述成计算图的形式,允许结构和运算操作配置所具备的自由度能够被分配到各个分布式节点上.计算图可以分成多个子图,分配给服务器集群中的不同节点. 强烈推荐读者阅读论文& ...
随机推荐
- idea 常用功能
Ctrl + E:打开最近文件 双击 Shift:按文件名查找文件 Ctrl + Shift + F:全局搜索 Alt + ~(数字 1 左边的键):commit.push 代码 ...
- C# IV: 数据库基础操作2
需上一篇C# III:数据库基础操作 另外一个经常碰到的数据库操作是,单次执行多个SQL语句,譬如,一次性插入多条数据. 方法一,拼凑长SQL语句 拼凑长SQL语句实际上是String的操作.如下示例 ...
- PHP 7.4 新语法:箭头函数
短闭包,也叫做箭头函数,是一种用 php 编写的短函数.当向函数中传递闭包时,这个功能是非常有用的,比如使用 array_map 或是 array_filter 函数时. 译者注:PHP7.4 计划于 ...
- 自学python的高效学习方法【python秘籍】
随着互联网的发展,数据科学概念的普及,Python火得一塌糊涂,为此很多小伙伴想学这门语言,苦于没有正确的学习方法,大部分都放弃了,所以我想总结下经验来帮助大家高效学完python技术!第一.首先学习 ...
- java编程思想第四版第八章总结
1. 多态的含义 面向对象的三大基本特征: 封装,继承,多态. 多态是干什么的? 多态将做什么和怎么做分离开.从另一个角度将接口是实现类分离开. 多态的作用 消除类型之间耦合的关系 使用多态的好处? ...
- mysql提示Packet for query is too large (1142 > 1024)解决方案
注:最近mysql一直提示如下错误 Packet for query is too large (1185 > 1024). You can change this value on the s ...
- .NET Core 获取数据库上下文实例的方法和配置连接字符串
目录 .NET Core 获取数据库上下文实例的方法和配置连接字符串 ASP.NET Core 注入 .NET Core 注入 无签名上下文 OnConfigure 配置 有签名上下文构造函数和自己n ...
- 力扣(LeetCode)种花问题 个人题解
假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有.可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去. 给定一个花坛(表示为一个数组包含0和1,其中0表示没种植花,1表示种植了花 ...
- ubuntukylin16.04LTS(乌班图麒麟版长期支持版,并非银河麒麟)安装体验
最近,国产银河麒麟版在政府部门推广使用.我有幸接触了,感觉还是不错的.这次政府软件正版化整改中,也列入了windows和银河麒麟的选项.我想试安装一下,可是没找到.就近找了它的类似系统ubuntuky ...
- SpringBoot学习(三)—— springboot快速整合swagger文档
目录 MyBatis 简介 引入mybatis组件 代码实战 MyBatis @ 简介 优点 最大的优点是SQL语句灵活,适合调优情景,业务复杂情景 劣势 最大的劣势是不同数据库之间的迁移 引入myb ...