洛谷 P1351 (枚举)
题目大意:
给你 n 个节点, n-1 条边的无向联通图。若定义(u,v)表示 u 与 v 点的最短距离,如果 (u,v)值为 2 ,则这两个点的点权之积(即 Wu * Wv)称为联合权值,求全图中联合权值的最大值以及联合权值的总和。
分析:
1、由于是 n-1 条边且为无向联通图,很容易判断出该图是个无根树。
2、那我们可以遍历全图中所有节点,然后这些节点的儿子节点的相对距离都是 2 。
3、若 A 节点的两个儿子 a b,他们对答案做贡献的话,那么不可能会有第二个节点也拥有 a b 两个节点作为儿子。所以这样枚举是不会重复的。
4、按理来说,我们需要遍历这个节点的所有儿子节点对,然后依次求和答案。但通过分析可以发现: 若有 a b 两个儿子,那么贡献为 2*ab == (a + b)2 - (a2 + b2);同样若有 3 个儿子 a b c ,则贡献为 2*ab + 2*ac + 2*bc == (a+b+c)2 - (a2 + b2 + c2)。 故可以依次统计 和与平方和 ,然后最后处理一下即可。
5、对于判断最大值: A 节点的儿子节点中最大的两个点权之积,即是 A 为父亲节点时的最大联合权值。那么只要取最大父亲节点的最大联合权值即可。
代码如下:
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
#define maxn 200008
typedef long long ll;
const ll mod = ;
int n,cnt;
int head[maxn],in[maxn];
ll a[maxn];
struct Edge{
int to;
int next;
}edge[maxn<<];
inline void add(int u,int v){
edge[++cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt;
return;
}
int main(){
scanf("%d",&n);
int A,B;
for (int i=; i <= n-; i++) {
scanf("%d%d",&A,&B);
add(A,B),add(B,A);
in[A]++,in[B]++;
}
for (int i=; i <= n; i++) scanf("%lld",&a[i]);
ll ans=,res=;
for (int i=; i <= n; i++) {
if(in[i]<=) continue;
ll s1=,s2=;
ll MMax=,mmax=;
for(int j=head[i];j;j=edge[j].next){
int v=edge[j].to;
s1=(s1+a[v])%mod,s2=(s2+a[v]*a[v]%mod)%mod;
if(a[v]>=MMax){mmax=MMax;MMax=a[v];}
else if(a[v]>mmax) mmax=a[v];
}
ll k = ((s1*s1)%mod-s2+mod)%mod;
ans=(ans+k)%mod;
res=max(res,MMax*mmax);
}
printf("%lld %lld\n",res,ans);
}
洛谷 P1351 (枚举)的更多相关文章
- 【题解】洛谷P1351 [NOIP2014TG] 联合权值(树形结构+DFS)
题目来源:洛谷P1351 思路 由题意可得图为一棵树 在一棵树上距离为2的两个点有两种情况 当前点与其爷爷 当前点的两个儿子 当情况为当前点与其爷爷时比较好操作 只需要在传递时不仅传递父亲 还传递爷爷 ...
- 洛谷 P1351 联合权值 题解
P1351 联合权值 题目描述 无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\),每条 ...
- 【洛谷P1351】联合权值
我们枚举中间点,当连的点数不小于2时进行处理 最大值好搞 求和:设中间点 i 所连所有点权之和为sum 则对于每个中间点i的联合权值之和为: w[j]*(sum-w[j])之和 #include< ...
- 【洛谷P1351】[NOIP2014]联合权值
联合权值 题目链接 首先,直接两重循环暴力枚举得了70分 然后发现第二重循环可以记忆化一下 记忆一下每个点的子节点的权值和.最大值. 次大值(为了处理该点的父节点权值恰好为最大值) 具体看代码 #in ...
- 洛谷 P1351 联合权值 —— 树形DP
题目:https://www.luogu.org/problemnew/show/P1351 树形DP,别忘了子树之间的情况(拐一下距离为2). 代码如下: #include<iostream& ...
- 洛谷——P1351 联合权值
https://www.luogu.org/problem/show?pid=1351 题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i , ...
- [NOIP2014] 提高组 洛谷P1351 联合权值
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...
- 洛谷P1351 联合权值(树形dp)
题意 题目链接 Sol 一道很简单的树形dp,然而被我写的这么长 分别记录下距离为\(1/2\)的点数,权值和,最大值.以及相邻儿子之间的贡献. 树形dp一波.. #include<bits/s ...
- 【前缀和】【前缀MAX】洛谷 P1351 NOIP2014提高组 day1 T2 联合权值
不难发现,树中与某个点距离为2的点只可能是它的父亲的父亲.儿子的儿子 或者 兄弟,分类讨论一下即可. 只有对于兄弟我们不能暴力搞,维护一下每个节点的所有儿子的前缀和.前缀MAX就行了. #includ ...
随机推荐
- [Linux] 多进程网络编程监听一个端口
SO_REUSEPORT支持多个进程或者线程绑定到同一端口 每个进程可以自己创建socket.bind.listen.accept相同的地址和端口,各自是独立平等的.让多进程监听同一个端口,各个进程中 ...
- 攻防世界Web新手练习区(1-6)
第一题 view_source 获取在线场景查看网页 打开页面之后首先考虑查看源代码,发现不能右击 根据题目的提示考虑使用view-source查看源代码,发现flag 第二题 get_post 获取 ...
- FTP安装及配置
在centos7安装ftp服务 yum install -y vsftpd 启动服务 systemctl start vsftpd 自启动 systemctl enable vsftpd 查看端口 注 ...
- IDE开发小技巧-快速引包/替换关键词
快速引包 Ctrl+Shift+O 快速搜索/查找替换 Ctrl+F
- Java连载58-静态内部类、成员内部类详解
一.内部类的分类: (1)静态内部类(2)成员内部类(3)局部内部类(4)匿名内部类 二.静态内部类 1.静态内部类可以等同的看做是静态变量 内部类的重要作用:可以访问外部类中的私有数据 2.静态内部 ...
- 如何开启php错误日志
nginx与apache不一样,在apache中可以直接指定php的错误日志,那样在php执行中的错误信息就直接输入到php的错误日志中,可以方便查询. 在nginx中事情就变成了这样:nginx只对 ...
- Luogu P1583 魔法照片
题目描述 一共有n(n≤20000)个人(以1--n编号)向佳佳要照片,而佳佳只能把照片给其中的k个人.佳佳按照与他们的关系好坏的程度给每个人赋予了一个初始权值W[i].然后将初始权值从大到小进行排序 ...
- Java描述设计模式(08):桥接模式
本文源码:GitHub·点这里 || GitEE·点这里 一.桥接模式简介 1.基础描述 桥梁模式是对象的结构模式.又称为柄体(Handle and Body)模式或接口(Interface)模式.桥 ...
- vue 客户端渲染和服务端渲染
参考链接 https://www.cnblogs.com/tiedaweishao/p/6644267.html
- (四十三)c#Winform自定义控件-Listview-HZHControls
官网 http://www.hzhcontrols.com 前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. GitHub:https://github.com/kww ...