洛谷 P1351 (枚举)
题目大意:
给你 n 个节点, n-1 条边的无向联通图。若定义(u,v)表示 u 与 v 点的最短距离,如果 (u,v)值为 2 ,则这两个点的点权之积(即 Wu * Wv)称为联合权值,求全图中联合权值的最大值以及联合权值的总和。
分析:
1、由于是 n-1 条边且为无向联通图,很容易判断出该图是个无根树。
2、那我们可以遍历全图中所有节点,然后这些节点的儿子节点的相对距离都是 2 。
3、若 A 节点的两个儿子 a b,他们对答案做贡献的话,那么不可能会有第二个节点也拥有 a b 两个节点作为儿子。所以这样枚举是不会重复的。
4、按理来说,我们需要遍历这个节点的所有儿子节点对,然后依次求和答案。但通过分析可以发现: 若有 a b 两个儿子,那么贡献为 2*ab == (a + b)2 - (a2 + b2);同样若有 3 个儿子 a b c ,则贡献为 2*ab + 2*ac + 2*bc == (a+b+c)2 - (a2 + b2 + c2)。 故可以依次统计 和与平方和 ,然后最后处理一下即可。
5、对于判断最大值: A 节点的儿子节点中最大的两个点权之积,即是 A 为父亲节点时的最大联合权值。那么只要取最大父亲节点的最大联合权值即可。
代码如下:
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
#define maxn 200008
typedef long long ll;
const ll mod = ;
int n,cnt;
int head[maxn],in[maxn];
ll a[maxn];
struct Edge{
int to;
int next;
}edge[maxn<<];
inline void add(int u,int v){
edge[++cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt;
return;
}
int main(){
scanf("%d",&n);
int A,B;
for (int i=; i <= n-; i++) {
scanf("%d%d",&A,&B);
add(A,B),add(B,A);
in[A]++,in[B]++;
}
for (int i=; i <= n; i++) scanf("%lld",&a[i]);
ll ans=,res=;
for (int i=; i <= n; i++) {
if(in[i]<=) continue;
ll s1=,s2=;
ll MMax=,mmax=;
for(int j=head[i];j;j=edge[j].next){
int v=edge[j].to;
s1=(s1+a[v])%mod,s2=(s2+a[v]*a[v]%mod)%mod;
if(a[v]>=MMax){mmax=MMax;MMax=a[v];}
else if(a[v]>mmax) mmax=a[v];
}
ll k = ((s1*s1)%mod-s2+mod)%mod;
ans=(ans+k)%mod;
res=max(res,MMax*mmax);
}
printf("%lld %lld\n",res,ans);
}
洛谷 P1351 (枚举)的更多相关文章
- 【题解】洛谷P1351 [NOIP2014TG] 联合权值(树形结构+DFS)
题目来源:洛谷P1351 思路 由题意可得图为一棵树 在一棵树上距离为2的两个点有两种情况 当前点与其爷爷 当前点的两个儿子 当情况为当前点与其爷爷时比较好操作 只需要在传递时不仅传递父亲 还传递爷爷 ...
- 洛谷 P1351 联合权值 题解
P1351 联合权值 题目描述 无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\),每条 ...
- 【洛谷P1351】联合权值
我们枚举中间点,当连的点数不小于2时进行处理 最大值好搞 求和:设中间点 i 所连所有点权之和为sum 则对于每个中间点i的联合权值之和为: w[j]*(sum-w[j])之和 #include< ...
- 【洛谷P1351】[NOIP2014]联合权值
联合权值 题目链接 首先,直接两重循环暴力枚举得了70分 然后发现第二重循环可以记忆化一下 记忆一下每个点的子节点的权值和.最大值. 次大值(为了处理该点的父节点权值恰好为最大值) 具体看代码 #in ...
- 洛谷 P1351 联合权值 —— 树形DP
题目:https://www.luogu.org/problemnew/show/P1351 树形DP,别忘了子树之间的情况(拐一下距离为2). 代码如下: #include<iostream& ...
- 洛谷——P1351 联合权值
https://www.luogu.org/problem/show?pid=1351 题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i , ...
- [NOIP2014] 提高组 洛谷P1351 联合权值
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...
- 洛谷P1351 联合权值(树形dp)
题意 题目链接 Sol 一道很简单的树形dp,然而被我写的这么长 分别记录下距离为\(1/2\)的点数,权值和,最大值.以及相邻儿子之间的贡献. 树形dp一波.. #include<bits/s ...
- 【前缀和】【前缀MAX】洛谷 P1351 NOIP2014提高组 day1 T2 联合权值
不难发现,树中与某个点距离为2的点只可能是它的父亲的父亲.儿子的儿子 或者 兄弟,分类讨论一下即可. 只有对于兄弟我们不能暴力搞,维护一下每个节点的所有儿子的前缀和.前缀MAX就行了. #includ ...
随机推荐
- 表单生成器(Form Builder)之伪造表单数据mongodb篇
这篇文章终于回到了正轨:为mongodb伪造数据.之前的随机数.随机车牌照.随机时间还有这篇笔记中的获取指定长度的中文字符串,都是为这篇笔记做准备.看一下我们的准备(基础代码) // 1.获取指定范围 ...
- Samba共享文件
1 安装samba yum install -y samba* 2 添加用户 useradd smbuser 3 设置共享文件用户的密码 smbpasswd -a smbuser 4 创建公共共享文件 ...
- 工作笔记 之 Linux服务搭建
No.1 linux环境下安装nginx步骤 Nginx (engine x) 是一款轻量级的Web 服务器.反向代理服务器.电子邮件(IMAP/POP3)代理服务器,在BSD-like 协议下发行. ...
- Netty实战:设计一个IM框架
来源:逅弈逐码 bitchat 是一个基于 Netty 的 IM 即时通讯框架 项目地址:https://github.com/all4you/bitchat 快速开始 bitchat-example ...
- 【NOI 2011】阿狸的打字机
Problem Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有 \(28\) 个按键,分别印有 \(26\) 个小写英文字母和 B . P 两个字母. ...
- C#基础知识1-深入理解值类型和引用类型
C#值类型和引用类型这个概念在刚学习的时候应该就知道了.但是我们并没有深入的去理解它.越是基础知识其实才是最有用的.对代码的优化,代码质量的提升都有帮助.通过整理本文章,对很多知识也起到了巩固的作用吧 ...
- 资深程序员告诉你为什么要用Python3而不是Python2
经常遇到这样的问题:<现在开始学习python的话,是学习python2.x还是学习python3.x比较好?>,这也是许多初学者会遇到的问题,我们的答案是python 3.x. 为了帮助 ...
- javaWeb核心技术第十一篇之Listener
监听器:所谓的监听器是指对整个WEB环境的监听,当被监视的对象发生改变时,立即调用相应的方法进行处理. 监听术语: 事件源:被监听的对象. 监听器对象:监听事件源的对象 注册或绑定:1和2结合的过程 ...
- Java面试基础 -- Docker篇
1.什么是Docker? Docker是一个容器化平台,它以容器的形式将您的应用程序及其所有依赖项打包在一起,以确保您的应用程序在任何环境中无缝运行. 2.什么是Docker镜像? Docker镜像是 ...
- FCC---Use the CSS Transform Property skewX to Skew an Element Along the X-Axis
The next function of the transform property is skewX(), which skews the selected element along its X ...