Kafka API实战

环境准备

  • 在eclipse中创建一个java工程
  • 在工程的根目录创建一个lib文件夹
  • 解压kafka安装包,将安装包libs目录下的jar包拷贝到工程的lib目录下,并build path。
  • 启动zk和kafka集群,在kafka集群中打开一个消费者

生产者API

[upuptop@hadoop102 kafka]$ bin/kafka-console-consumer.sh --zookeeper hadoop102:2181 --topic first

创建生产者


public static void main(String[] args) { Properties props = new Properties();
// Kafka服务端的主机名和端口号
props.put("bootstrap.servers", "hadoop103:9092");
// 等待所有副本节点的应答
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
// key序列化
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// value序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); KafkaProducer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 50; i++) {
producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), "hello world-" + i));
} producer.close();
}

创建生产者带回调函数


public static void main(String[] args) { Properties props = new Properties();
// Kafka服务端的主机名和端口号
props.put("bootstrap.servers", "hadoop103:9092");
// 等待所有副本节点的应答
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 增加服务端请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
// key序列化
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// value序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(props); for (int i = 0; i < 50; i++) { kafkaProducer.send(new ProducerRecord<String, String>("first", "hello" + i), new Callback() { @Override
public void onCompletion(RecordMetadata metadata, Exception exception) { if (metadata != null) { System.out.println(metadata.partition() + "---" + metadata.offset());
}
}
});
} kafkaProducer.close();
}

自定义分区生产者

  • 需求:将所有数据存储到topic的第0号分区上
  • 定义一个类实现Partitioner接口,重写里面的方法

public class CustomPartitioner implements Partitioner { @Override
public void configure(Map<String, ?> configs) { } @Override
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
// 控制分区
return 0;
} @Override
public void close() { }

使用自定义分区

public static void main(String[] args) {

		Properties props = new Properties();
// Kafka服务端的主机名和端口号
props.put("bootstrap.servers", "hadoop103:9092");
// 等待所有副本节点的应答
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 增加服务端请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
// key序列化
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// value序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// 自定义分区
props.put("partitioner.class", "com.upuptop.kafka.CustomPartitioner"); Producer<String, String> producer = new KafkaProducer<>(props);
producer.send(new ProducerRecord<String, String>("first", "1", "upuptop")); producer.close();
}

测试

(1)在hadoop102上监控/opt/module/kafka/logs/目录下first主题3个分区的log日志动态变化情况
[upuptop@hadoop102 first-0]$ tail -f 00000000000000000000.log
[upuptop@hadoop102 first-1]$ tail -f 00000000000000000000.log
[upuptop@hadoop102 first-2]$ tail -f 00000000000000000000.log
(2)发现数据都存储到指定的分区了。

Kafka消费者Java API

在控制台创建发送者

[upuptop@hadoop104 kafka]$ bin/kafka-console-producer.sh --broker-list hadoop102:9092 --topic first
>hello world

创建消费者

public static void main(String[] args) {

		Properties props = new Properties();
// 定义kakfa 服务的地址,不需要将所有broker指定上
props.put("bootstrap.servers", "hadoop102:9092");
// 制定consumer group
props.put("group.id", "test");
// 是否自动确认offset
props.put("enable.auto.commit", "true");
// 自动确认offset的时间间隔
props.put("auto.commit.interval.ms", "1000");
// key的序列化类
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
// value的序列化类
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
// 定义consumer
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props); // 消费者订阅的topic, 可同时订阅多个
consumer.subscribe(Arrays.asList("first", "second","third")); while (true) {
// 读取数据,读取超时时间为100ms
ConsumerRecords<String, String> records = consumer.poll(100); for (ConsumerRecord<String, String> record : records)
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
}

Kafka API操作的更多相关文章

  1. Kafka系列三 java API操作

    使用java API操作kafka 1.pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xs ...

  2. Kafka(五)Kafka的API操作和拦截器

    一 kafka的API操作 1.1 环境准备 1)在eclipse中创建一个java工程 2)在工程的根目录创建一个lib文件夹 3)解压kafka安装包,将安装包libs目录下的jar包拷贝到工程的 ...

  3. kafka的api操作(官网http://kafka.apache.org/documentation/#producerapi)

    Kafka API 简单用法 本篇会用到以下依赖:(本人包和这个不同,去maven里查找) <dependency><groupId>org.apache.kafka</ ...

  4. kafka (搜索) 在idea api操作(官方apihttp://kafka.apache.org/documentation/#producerapi)

     https://blog.csdn.net/isea533/article/details/73822881        这个不推荐,可以看一下(https://www.cnblogs.com/b ...

  5. kafka api的基本使用

    kafka API kafka Consumer提供两套Java API:高级Consumer API.和低级Consumer API. 高级Consumer API 优点: 高级API写起来简单,易 ...

  6. 转 用C API 操作MySQL数据库

    用C API 操作MySQL数据库 参考MYSQL的帮助文档整理 这里归纳了C API可使用的函数,并在下一节详细介绍了它们.请参见25.2.3节,“C API函数描述”. 函数 描述 mysql_a ...

  7. Kafka实战系列--Kafka API使用体验

    前言: kafka是linkedin开源的消息队列, 淘宝的metaq就是基于kafka而研发. 而消息队列作为一个分布式组件, 在服务解耦/异步化, 扮演非常重要的角色. 本系列主要研究kafka的 ...

  8. hive-通过Java API操作

    通过Java API操作hive,算是测试hive第三种对外接口 测试hive 服务启动 package org.admln.hive; import java.sql.SQLException; i ...

  9. Hadoop学习记录(3)|HDFS API 操作|RPC调用

    HDFS的API操作 URL方式访问 package hdfs; import java.io.IOException; import java.io.InputStream; import java ...

随机推荐

  1. Cocos2d-x 3.X Qt MinGW版本编译运行

    自Cocos2d-x 3.X引入了C++ 11特性,在Windows平台上的支持就仅限VS 2012,其实还可以尝试MinGW版本,GitHub上有MinGW版本的Qt Creator工程. 地址:h ...

  2. 在DBGrid增加一列CheckBox(而非DBCheckBox)

    自:http://rabbitfox.blog.sohu.com/33264033.html http://community.csdn.net/Expert/topic/5342/5342920.x ...

  3. U盘免疫

    界面如下: 关键部分代码如下: void CImmunityUDlg::OnBnClickedButtonOk() { // TODO: 在此添加控件通知处理程序代码 TCHAR szPath[MAX ...

  4. Codility--- TapeEquilibrium

    Task description A non-empty zero-indexed array A consisting of N integers is given. Array A represe ...

  5. Codility---FrogJmp

    Task description A small frog wants to get to the other side of the road. The frog is currently loca ...

  6. Flink UDF

    本文会主要讲三种udf: ScalarFunction TableFunction AggregateFunction 用户自定义函数是非常重要的一个特征,因为他极大地扩展了查询的表达能力.本文除了介 ...

  7. 使用事件注册器进行swoole代码封装

    在使用swoole的时候,事件回调很难维护与编写,写起来很乱.特别在封装一些代码的时候,使用这种注册,先注册用户自己定义的,然后注册些默认的事件函数. Server.php class Server ...

  8. vagrant+xdebug

    https://segmentfault.com/a/1190000007789295

  9. ASP.NET Core on K8S学习初探(3)部署API到K8S

    在上一篇<基本概念快速一览>中,我们把基本的一些概念快速地简单地不求甚解地过了一下,本篇开始我们会将ASP.NET Core WebAPI部署到K8S,从而结束初探的旅程. Section ...

  10. 【koa2基础框架封装】基于Proxy路由按需加载器和初始加载器

    我们在使用koa2做路由拦截后一般都习惯于直接将查找对应处理函数的过程映射到项目的文件夹目录,如: router.get('/test', app.controller.index.test); ap ...