Hadoop 系列(一)—— 分布式文件系统 HDFS
一、介绍
HDFS (Hadoop Distributed File System)是 Hadoop 下的分布式文件系统,具有高容错、高吞吐量等特性,可以部署在低成本的硬件上。
二、HDFS 设计原理
2.1 HDFS 架构
HDFS 遵循主/从架构,由单个 NameNode(NN) 和多个 DataNode(DN) 组成:
- NameNode : 负责执行有关
文件系统命名空间的操作,例如打开,关闭、重命名文件和目录等。它同时还负责集群元数据的存储,记录着文件中各个数据块的位置信息。 - DataNode:负责提供来自文件系统客户端的读写请求,执行块的创建,删除等操作。
2.2 文件系统命名空间
HDFS 的 文件系统命名空间 的层次结构与大多数文件系统类似 (如 Linux), 支持目录和文件的创建、移动、删除和重命名等操作,支持配置用户和访问权限,但不支持硬链接和软连接。NameNode 负责维护文件系统名称空间,记录对名称空间或其属性的任何更改。
2.3 数据复制
由于 Hadoop 被设计运行在廉价的机器上,这意味着硬件是不可靠的,为了保证容错性,HDFS 提供了数据复制机制。HDFS 将每一个文件存储为一系列块,每个块由多个副本来保证容错,块的大小和复制因子可以自行配置(默认情况下,块大小是 128M,默认复制因子是 3)。
2.4 数据复制的实现原理
大型的 HDFS 实例在通常分布在多个机架的多台服务器上,不同机架上的两台服务器之间通过交换机进行通讯。在大多数情况下,同一机架中的服务器间的网络带宽大于不同机架中的服务器之间的带宽。因此 HDFS 采用机架感知副本放置策略,对于常见情况,当复制因子为 3 时,HDFS 的放置策略是:
在写入程序位于 datanode 上时,就优先将写入文件的一个副本放置在该 datanode 上,否则放在随机 datanode 上。之后在另一个远程机架上的任意一个节点上放置另一个副本,并在该机架上的另一个节点上放置最后一个副本。此策略可以减少机架间的写入流量,从而提高写入性能。
如果复制因子大于 3,则随机确定第 4 个和之后副本的放置位置,同时保持每个机架的副本数量低于上限,上限值通常为 (复制系数 - 1)/机架数量 + 2,需要注意的是不允许同一个 dataNode 上具有同一个块的多个副本。
2.5 副本的选择
为了最大限度地减少带宽消耗和读取延迟,HDFS 在执行读取请求时,优先读取距离读取器最近的副本。如果在与读取器节点相同的机架上存在副本,则优先选择该副本。如果 HDFS 群集跨越多个数据中心,则优先选择本地数据中心上的副本。
2.6 架构的稳定性
1. 心跳机制和重新复制
每个 DataNode 定期向 NameNode 发送心跳消息,如果超过指定时间没有收到心跳消息,则将 DataNode 标记为死亡。NameNode 不会将任何新的 IO 请求转发给标记为死亡的 DataNode,也不会再使用这些 DataNode 上的数据。 由于数据不再可用,可能会导致某些块的复制因子小于其指定值,NameNode 会跟踪这些块,并在必要的时候进行重新复制。
2. 数据的完整性
由于存储设备故障等原因,存储在 DataNode 上的数据块也会发生损坏。为了避免读取到已经损坏的数据而导致错误,HDFS 提供了数据完整性校验机制来保证数据的完整性,具体操作如下:
当客户端创建 HDFS 文件时,它会计算文件的每个块的 校验和,并将 校验和 存储在同一 HDFS 命名空间下的单独的隐藏文件中。当客户端检索文件内容时,它会验证从每个 DataNode 接收的数据是否与存储在关联校验和文件中的 校验和 匹配。如果匹配失败,则证明数据已经损坏,此时客户端会选择从其他 DataNode 获取该块的其他可用副本。
3.元数据的磁盘故障
FsImage 和 EditLog 是 HDFS 的核心数据,这些数据的意外丢失可能会导致整个 HDFS 服务不可用。为了避免这个问题,可以配置 NameNode 使其支持 FsImage 和 EditLog 多副本同步,这样 FsImage 或 EditLog 的任何改变都会引起每个副本 FsImage 和 EditLog 的同步更新。
4.支持快照
快照支持在特定时刻存储数据副本,在数据意外损坏时,可以通过回滚操作恢复到健康的数据状态。
三、HDFS 的特点
3.1 高容错
由于 HDFS 采用数据的多副本方案,所以部分硬件的损坏不会导致全部数据的丢失。
3.2 高吞吐量
HDFS 设计的重点是支持高吞吐量的数据访问,而不是低延迟的数据访问。
3.3 大文件支持
HDFS 适合于大文件的存储,文档的大小应该是是 GB 到 TB 级别的。
3.3 简单一致性模型
HDFS 更适合于一次写入多次读取 (write-once-read-many) 的访问模型。支持将内容追加到文件末尾,但不支持数据的随机访问,不能从文件任意位置新增数据。
3.4 跨平台移植性
HDFS 具有良好的跨平台移植性,这使得其他大数据计算框架都将其作为数据持久化存储的首选方案。
附:图解HDFS存储原理
说明:以下图片引用自博客:翻译经典 HDFS 原理讲解漫画
1. HDFS写数据原理
2. HDFS读数据原理
3. HDFS故障类型和其检测方法
第二部分:读写故障的处理
第三部分:DataNode 故障处理
副本布局策略:
参考资料
- Apache Hadoop 2.9.2 > HDFS Architecture
- Tom White . hadoop 权威指南 [M] . 清华大学出版社 . 2017.
- 翻译经典 HDFS 原理讲解漫画
更多大数据系列文章可以参见 GitHub 开源项目: 大数据入门指南
Hadoop 系列(一)—— 分布式文件系统 HDFS的更多相关文章
- Hadoop分布式文件系统--HDFS结构分析
转自:http://blog.csdn.net/androidlushangderen/article/details/47377543 HDFS系列:http://blog.csdn.net/And ...
- Hadoop 学习之路(一)—— 分布式文件系统 HDFS
一.介绍 HDFS (Hadoop Distributed File System)是Hadoop下的分布式文件系统,具有高容错.高吞吐量等特性,可以部署在低成本的硬件上. 二.HDFS 设计原理 2 ...
- 【转载】Hadoop分布式文件系统HDFS的工作原理详述
转载请注明来自36大数据(36dsj.com):36大数据 » Hadoop分布式文件系统HDFS的工作原理详述 转注:读了这篇文章以后,觉得内容比较易懂,所以分享过来支持一下. Hadoop分布式文 ...
- 大数据 --> 分布式文件系统HDFS的工作原理
分布式文件系统HDFS的工作原理 Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统.HDFS是一个高度容错性的系统,适合部署在廉价的机器上.它能提供高吞吐量的数 ...
- 大数据技术原理与应用——分布式文件系统HDFS
分布式文件系统概述 相对于传统的本地文件系统而言,分布式文件系统(Distribute File System)是一种通过网络实现文件在多台主机上进行分布式存储的文件系统.分布式文件系统的设计一般采用 ...
- 你想了解的分布式文件系统HDFS,看这一篇就够了
1.分布式文件系统 计算机集群结构 分布式文件系统把文件分布存储到多个节点(计算机)上,成千上万的计算机节点构成计算机集群. 分布式文件系统使用的计算机集群,其配置都是由普通硬件构成的,与用多个处理器 ...
- Hadoop 分布式文件系统 - HDFS
当数据集超过一个单独的物理计算机的存储能力时,便有必要将它分不到多个独立的计算机上.管理着跨计算机网络存储的文件系统称为分布式文件系统.Hadoop 的分布式文件系统称为 HDFS,它 是为 以流式数 ...
- Hadoop概念学习系列之分布式文件系统(三十)
===============> 数据量越来越多,在一个操作系统管辖的范围存下不了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,因此迫切需要一种系统来管理多台机器上的文件,这就 ...
- Hadoop分布式文件系统HDFS详解
Hadoop分布式文件系统即Hadoop Distributed FileSystem. 当数据集的大小超过一台独立的物理计算机的存储能力时,就有必要对它进行分区(Partition)并 ...
随机推荐
- Codeforces Round #568 (Div. 2)A
A. Ropewalkers 题目链接:http://codeforces.com/contest/1185/problem/A 题目: Polycarp decided to relax on hi ...
- 微信小程序ES6方法Promise封装接口
为何要封装接口? 有小程序开发的经验者,相信对微信API Request很熟悉了.对接接口时,有大部分的开发者都是直接调用request方法,去请求后台接口并渲染数据.诚然,直接使用api发起请求对接 ...
- 学习 GitHub 有什么好处?
layout: post title: "学习 GitHub 有什么好处?" date: 2018-04-15 19:20:20 +0800 --- 鸣谢:王顶 老师(河北经贸大学 ...
- Visual Studio中View页面与Js页面用快捷键互相跳转
现在已经将源码放到GitHub中了 地址是 https://github.com/liningit/ViewJsLN 公司开发的项目使用的是Mvc框架,且Js与View页面是分开在两个文件夹下的,所以 ...
- 微服务-springboot-读写分离(多数据源切换)
为什么需要读写分离 当项目越来越大和并发越来大的情况下,单个数据库服务器的压力肯定也是越来越大,最终演变成数据库成为性能的瓶颈,而且当数据越来越多时,查询也更加耗费时间,当然数据库数据过大时,可以采用 ...
- NEUOJ 1702:撩妹全靠魅力值(CDQ分治三维偏序)
http://acm.neu.edu.cn/hustoj/problem.php?id=1702 思路:三维偏序模板题,用CDQ分治+树状数组或者树套树.对于三元组(x,y,z),先对x进行排序,然后 ...
- IO流簡單代碼
今天測試了一下,在博客園裏HTML源碼編譯器裏寫CSS内部樣式,更新編譯后,内部樣式可用,但是會將寫的内部樣式代碼强制加上代碼注釋進行編譯,有點類似于强制注入.編譯后的效果就是在前面加入了一個空的p標 ...
- plot3d网格读取写入与可视化
目录 说明 对于程序的说明 源码 说明 plot3d格式是NASA制定并大量使用的CFD网格文件格式,在CFD编程过程中经常涉及到.本文利用Python语言编写一个读取plot3d文件,写入plot3 ...
- 自己实现IOC容器,java代码实现简易版IOC容器,IOC容器实现的步骤分解
一.需求 实现一个简易的IOC容器,管理Bean,从IOC容器的BeanFactory中获取实例,从而取代自己new实例的做法. 二.实现步骤分析 三.具体代码实现 自定义注解类 MyComponen ...
- 【基础算法-模拟-例题-金币】-C++
原题链接:P2669 金币 这道题目完全是一道模拟题,只要按照题目中的加金币的算法和sum累加就可以很轻易得出最终答案. 说一下有一些点需要注意: 1.用i来计每天发的金币数,n来计已经拿了金币的天数 ...