Background\text{Background}Background

Last night, lots of students from primary school came to our class to study OI.\text{Last night, lots of students from primary school came to our class to study OI.}Last night, lots of students from primary school came to our class to study OI.

Mark next to me was asked by one of them, "Dude, are you copying codes?"\text{Mark next to me was asked by one of them, "Dude, are you copying codes?"}Mark next to me was asked by one of them, "Dude, are you copying codes?"

Mark was very angry that time cuz he’s just moving his code from IDE to blog.\text{Mark was very angry that time cuz he's just moving his code from IDE to blog.}Mark was very angry that time cuz he’s just moving his code from IDE to blog.

So he decided to let them take a HARD test (though he failed).\text{So he decided to let them take a HARD test (though he failed).}So he decided to let them take a HARD test (though he failed).

Finally that guy apologized and we started upgrading our test so that it could \text{Finally that guy apologized and we started upgrading our test so that it could }Finally that guy apologized and we started upgrading our test so that it could be harder. They’ll take this test this Sunday.\text{be harder. They'll take this test this Sunday.}be harder. They’ll take this test this Sunday.

Problem\text{Problem}Problem

Interger N and N points in a circle are given. Connect every pair of \text{Interger }N\text{ and }N\text{ points in a circle are given. Connect every pair of }Interger N and N points in a circle are given. Connect every pair of 

these points to a edge. There aren’t any 3 edges which shares one point.\text{these points to a edge. There aren't any 3 edges which shares one point.}these points to a edge. There aren’t any 3 edges which shares one point.

Please calculate how many pieces of the circle are cut by these edges.\text{Please calculate how many pieces of the circle are cut by these edges.}Please calculate how many pieces of the circle are cut by these edges.

Solution\text{Solution}Solution

Let’s consider some cases with smaller Ns.\text{Let's consider some cases with smaller }N\text{s.}Let’s consider some cases with smaller Ns.

Easy to get\text{Easy to get}Easy to get

NNN ansansans
111 111
222 222
333 444
444 888
555 161616
......... .........

Dude, ans=2N−1. Solved.\text{Dude, }ans=2^{N-1}.\text{ Solved.}Dude, ans=2N−1. Solved.



But actually it’s wrong.\text{But actually it's wrong.}But actually it’s wrong.

These formula \text{These formula }These formula JUST right when N∈{1,2,3,4,5,6,10}.\text{ right when }N\in\{1,2,3,4,5,6,10\}. right when N∈{1,2,3,4,5,6,10}.

Let’s do some simple problems first.\text{Let's do some simple problems first.}Let’s do some simple problems first.

I. Calculate how many edges are there in the circle;\text{I. Calculate how many edges are there in the circle;}I. Calculate how many edges are there in the circle;

∵Every 2 points make a edge, and there’re N points,\because\text{Every 2 points make a edge, and there're }N\text{ points,}∵Every 2 points make a edge, and there’re N points,

∴There’re CN2 edges in total.\therefore\text{There're }C_{N}^{2}\text{ edges in total.}∴There’re CN2​ edges in total.

II. Calculate how many points of intersection of these edges.\text{II. Calculate how many points of intersection of these edges.}II. Calculate how many points of intersection of these edges.

It maybe a little difficult, but I think it’s necessary for you guys to think about it.\text{It maybe a little difficult, but I think it's necessary for you guys to think about it.}It maybe a little difficult, but I think it’s necessary for you guys to think about it.

∵Every 2 edges make a point of intersection, every 2 points make a edge,\because\text{Every 2 edges make a point of intersection, every 2 points make a edge,}∵Every 2 edges make a point of intersection, every 2 points make a edge,

and there’re N points,\text{and there're }N\text{ points,}and there’re N points,

∴There’re \therefore\text{There're }∴There’re N×(N−1)×(N−2)×(N−3)N\times(N-1)\times(N-2)\times(N-3)N×(N−1)×(N−2)×(N−3)=CN4 points of intersection in total.=C_{N}^{4}\text{ points of intersection in total.}=CN4​ points of intersection in total.



Here goes our Euler’s formula in topology. Set a polyhedron which has \text{Here goes our Euler's formula in topology. Set a polyhedron which has }Here goes our Euler’s formula in topology. Set a polyhedron which has 

V vertexes ,F pieces of surface, and E edges. It always meetV\text{ vertexes ,}F\text{ pieces of surface, and }E\text{ edges. It always meet}V vertexes ,F pieces of surface, and E edges. It always meetV−E+F=2V-E+F=2V−E+F=2

∴F=E−V+2.\therefore F=E-V+2.∴F=E−V+2.

Therefore, the answer is CN2+CN+4+2−1=CN2+CN+4+1. Solved.\text{Therefore, the answer is }C_{N}^{2}+C_{N}+{4}+2-1=C_{N}^{2}+C_{N}+{4}+1.\text{ Solved.}Therefore, the answer is CN2​+CN​+4+2−1=CN2​+CN​+4+1. Solved.

The End\text{The End}The End

Video by 3Blue1Brown from bilibili\text{Video by 3Blue1Brown from bilibili}Video by 3Blue1Brown from bilibili

Reference material\text{Reference material}Reference material

Circle Problem From 3Blue1Brown (分圆问题)的更多相关文章

  1. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  2. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  3. 后缀数组 --- WOj 1564 Problem 1564 - A - Circle

    Problem 1564 - A - Circle Problem's Link:   http://acm.whu.edu.cn/land/problem/detail?problem_id=156 ...

  4. 覆盖问题:最大覆盖问题(Maximum Covering Location Problem,MCLP)和集覆盖问题(Location Set Covering Problem,LSCP)

    集覆盖问题研究满足覆盖所有需求点顾客的前提下,服务站总的建站个数或建 设费用最小的问题.集覆盖问题最早是由 Roth和 Toregas等提出的,用于解决消防中心和救护车等的应急服务设施的选址问题,他们 ...

  5. PAT A1122 Hamiltonian Cycle (25 分)——图遍历

    The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a gra ...

  6. PAT A1142 Maximal Clique (25 分)——图

    A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the ...

  7. leaflet创建简单地图

    一.leaflet介绍: 1.Leaflet 是一个为建设移动设备友好的互动地图,而开发的现代的.开源的 JavaScript 库.它是由 Vladimir Agafonkin 带领一个专业贡献者团队 ...

  8. 说说设计模式~组合模式(Composite)

    返回目录 何时能用到它? 组合模式又叫部分-整体模式,在树型结构中,模糊了简单元素和复杂元素的概念,客户程序可以向处理简单元素一样来处理复杂元素,从而使得客户程序与复杂元素的内部结构解耦.对于今天这个 ...

  9. html 学习笔记--基础篇

    最近被部门经理要求看一下html,重新看发现好多以前看过的只是都忘记了或者以前走马观花看过没有记得住的东西,正好趁此机会在博客上记录一下,顺便的如果以后需要查找,这里有记录的话可能会比上网查快一点(也 ...

随机推荐

  1. StringBulider类

    StringBulider类创建的字符串同样可以对字符串进行修改: public class StringBuliderDemo { public static void main(String[] ...

  2. charles 编辑菜单总结

    本文参考:charles 编辑菜单总结 charles中proxy菜单的介绍:我的是4.1.2版本,mac系统下的菜单大同小异: 如下图: 这里其实都是常用的功能: 大概可以分为5个大块,看下分割线就 ...

  3. 会用python把linux命令写一遍的人,进大厂有多容易?

    看过这篇<2000字谏言,给那些想学Python的人,建议收藏后细看!>的读者应该都对一个命令有点印象吧?没错,就是 linux 中经常会用到的 ls 命令. 文章中我就提到如何提升自己的 ...

  4. Jenkins把GitHub项目做成Docker镜像

    本文是<Jenkins流水线(pipeline)实战>系列的第三篇,前面已对Jenkins流水线有了基本认识,也试过从GitHub下载pipeline脚本并执行,今天的实战是编写一段pip ...

  5. HashMap源码分析(史上最详细的源码分析)

    HashMap简介 HashMap是开发中使用频率最高的用于映射(键值对 key value)处理的数据结构,我们经常把hashMap数据结构叫做散列链表: ObjectI entry<Key, ...

  6. ASP.NET Core 3.0 : 二十五. TagHelper

    什么是TagHelper?这是ASP.NET Core 中新出现的一个名词,它的作用是使服务器端代码可以在Razor 文件中参与创建和呈现HTML 元素.(ASP.NET Core 系列目录) 一.概 ...

  7. AMD vs. CommonJS?

    js开发者对js模块加载的尝试和创新从来都没有停止过,尤其是当nodejs的出现后,模块化加载的必要性更加凸显.本文不讨论如何在nodejs环境来模块化加载(创造者已经利用commonJS机制解决), ...

  8. Loadrunner录制步骤及说明

    做好业务准备,如环境配置.服务启动等 打开Virtual User Generator界面---->New---->选择协议,录制网页时一般选择Web(HTTP/HTML) Start R ...

  9. Wordpress对接小程序配置过程

    最近发现一个很棒的开源项目-WordPress版微信小程序  https://github.com/iamxjb/winxin-app-watch-life.net,详细看了下介绍非常棒,不仅支持的功 ...

  10. 品Spring:详细解说bean后处理器

    一个小小的里程碑 首先感谢能看到本文的朋友,感谢你的一路陪伴. 如果每篇都认真看的话,会发现本系列以bean定义作为切入点,先是详细解说了什么是bean定义,接着又强调了bean定义为什么如此重要. ...