Background\text{Background}Background

Last night, lots of students from primary school came to our class to study OI.\text{Last night, lots of students from primary school came to our class to study OI.}Last night, lots of students from primary school came to our class to study OI.

Mark next to me was asked by one of them, "Dude, are you copying codes?"\text{Mark next to me was asked by one of them, "Dude, are you copying codes?"}Mark next to me was asked by one of them, "Dude, are you copying codes?"

Mark was very angry that time cuz he’s just moving his code from IDE to blog.\text{Mark was very angry that time cuz he's just moving his code from IDE to blog.}Mark was very angry that time cuz he’s just moving his code from IDE to blog.

So he decided to let them take a HARD test (though he failed).\text{So he decided to let them take a HARD test (though he failed).}So he decided to let them take a HARD test (though he failed).

Finally that guy apologized and we started upgrading our test so that it could \text{Finally that guy apologized and we started upgrading our test so that it could }Finally that guy apologized and we started upgrading our test so that it could be harder. They’ll take this test this Sunday.\text{be harder. They'll take this test this Sunday.}be harder. They’ll take this test this Sunday.

Problem\text{Problem}Problem

Interger N and N points in a circle are given. Connect every pair of \text{Interger }N\text{ and }N\text{ points in a circle are given. Connect every pair of }Interger N and N points in a circle are given. Connect every pair of 

these points to a edge. There aren’t any 3 edges which shares one point.\text{these points to a edge. There aren't any 3 edges which shares one point.}these points to a edge. There aren’t any 3 edges which shares one point.

Please calculate how many pieces of the circle are cut by these edges.\text{Please calculate how many pieces of the circle are cut by these edges.}Please calculate how many pieces of the circle are cut by these edges.

Solution\text{Solution}Solution

Let’s consider some cases with smaller Ns.\text{Let's consider some cases with smaller }N\text{s.}Let’s consider some cases with smaller Ns.

Easy to get\text{Easy to get}Easy to get

NNN ansansans
111 111
222 222
333 444
444 888
555 161616
......... .........

Dude, ans=2N−1. Solved.\text{Dude, }ans=2^{N-1}.\text{ Solved.}Dude, ans=2N−1. Solved.



But actually it’s wrong.\text{But actually it's wrong.}But actually it’s wrong.

These formula \text{These formula }These formula JUST right when N∈{1,2,3,4,5,6,10}.\text{ right when }N\in\{1,2,3,4,5,6,10\}. right when N∈{1,2,3,4,5,6,10}.

Let’s do some simple problems first.\text{Let's do some simple problems first.}Let’s do some simple problems first.

I. Calculate how many edges are there in the circle;\text{I. Calculate how many edges are there in the circle;}I. Calculate how many edges are there in the circle;

∵Every 2 points make a edge, and there’re N points,\because\text{Every 2 points make a edge, and there're }N\text{ points,}∵Every 2 points make a edge, and there’re N points,

∴There’re CN2 edges in total.\therefore\text{There're }C_{N}^{2}\text{ edges in total.}∴There’re CN2​ edges in total.

II. Calculate how many points of intersection of these edges.\text{II. Calculate how many points of intersection of these edges.}II. Calculate how many points of intersection of these edges.

It maybe a little difficult, but I think it’s necessary for you guys to think about it.\text{It maybe a little difficult, but I think it's necessary for you guys to think about it.}It maybe a little difficult, but I think it’s necessary for you guys to think about it.

∵Every 2 edges make a point of intersection, every 2 points make a edge,\because\text{Every 2 edges make a point of intersection, every 2 points make a edge,}∵Every 2 edges make a point of intersection, every 2 points make a edge,

and there’re N points,\text{and there're }N\text{ points,}and there’re N points,

∴There’re \therefore\text{There're }∴There’re N×(N−1)×(N−2)×(N−3)N\times(N-1)\times(N-2)\times(N-3)N×(N−1)×(N−2)×(N−3)=CN4 points of intersection in total.=C_{N}^{4}\text{ points of intersection in total.}=CN4​ points of intersection in total.



Here goes our Euler’s formula in topology. Set a polyhedron which has \text{Here goes our Euler's formula in topology. Set a polyhedron which has }Here goes our Euler’s formula in topology. Set a polyhedron which has 

V vertexes ,F pieces of surface, and E edges. It always meetV\text{ vertexes ,}F\text{ pieces of surface, and }E\text{ edges. It always meet}V vertexes ,F pieces of surface, and E edges. It always meetV−E+F=2V-E+F=2V−E+F=2

∴F=E−V+2.\therefore F=E-V+2.∴F=E−V+2.

Therefore, the answer is CN2+CN+4+2−1=CN2+CN+4+1. Solved.\text{Therefore, the answer is }C_{N}^{2}+C_{N}+{4}+2-1=C_{N}^{2}+C_{N}+{4}+1.\text{ Solved.}Therefore, the answer is CN2​+CN​+4+2−1=CN2​+CN​+4+1. Solved.

The End\text{The End}The End

Video by 3Blue1Brown from bilibili\text{Video by 3Blue1Brown from bilibili}Video by 3Blue1Brown from bilibili

Reference material\text{Reference material}Reference material

Circle Problem From 3Blue1Brown (分圆问题)的更多相关文章

  1. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  2. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  3. 后缀数组 --- WOj 1564 Problem 1564 - A - Circle

    Problem 1564 - A - Circle Problem's Link:   http://acm.whu.edu.cn/land/problem/detail?problem_id=156 ...

  4. 覆盖问题:最大覆盖问题(Maximum Covering Location Problem,MCLP)和集覆盖问题(Location Set Covering Problem,LSCP)

    集覆盖问题研究满足覆盖所有需求点顾客的前提下,服务站总的建站个数或建 设费用最小的问题.集覆盖问题最早是由 Roth和 Toregas等提出的,用于解决消防中心和救护车等的应急服务设施的选址问题,他们 ...

  5. PAT A1122 Hamiltonian Cycle (25 分)——图遍历

    The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a gra ...

  6. PAT A1142 Maximal Clique (25 分)——图

    A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the ...

  7. leaflet创建简单地图

    一.leaflet介绍: 1.Leaflet 是一个为建设移动设备友好的互动地图,而开发的现代的.开源的 JavaScript 库.它是由 Vladimir Agafonkin 带领一个专业贡献者团队 ...

  8. 说说设计模式~组合模式(Composite)

    返回目录 何时能用到它? 组合模式又叫部分-整体模式,在树型结构中,模糊了简单元素和复杂元素的概念,客户程序可以向处理简单元素一样来处理复杂元素,从而使得客户程序与复杂元素的内部结构解耦.对于今天这个 ...

  9. html 学习笔记--基础篇

    最近被部门经理要求看一下html,重新看发现好多以前看过的只是都忘记了或者以前走马观花看过没有记得住的东西,正好趁此机会在博客上记录一下,顺便的如果以后需要查找,这里有记录的话可能会比上网查快一点(也 ...

随机推荐

  1. response对响应的设置

    1.response对象设置响应行状态码: protected void doGet(HttpServletRequest request, HttpServletResponse response) ...

  2. 多线程——Callable接口

    package pers.aaa.callable; import java.util.concurrent.Callable; public class MyCallable implements ...

  3. Linux下Eclipse以及Java环境安装教程[小白化](2019-9)

    Linux下安装Eclipse以及Java 一.前言 许久未用Eclipse, Ubuntu上也没装Eclipse, 今天安装发现, 好多东西都忘了. 不过经过一番查找(百度, csdn) 终于还是安 ...

  4. 50 (OC)* URL Scheme 网页地址协议

    在Xcode 9 下,新建的工程,在plist文件中注册URL Schemes,从safari无法打开问题 1:URL Scheme是什么 2:URL Scheme有什么作用 3:URL Scheme ...

  5. [LeetCode] 由 “分形" 所想

    分形思想和递归思想有区别么? 一.简单例子 函数调用自己,简化了理解逻辑,但其他到处都是问题. #%% def listsum(numList): if len(numList) == 1: retu ...

  6. Transformer各层网络结构详解!面试必备!(附代码实现)

    1. 什么是Transformer <Attention Is All You Need>是一篇Google提出的将Attention思想发挥到极致的论文.这篇论文中提出一个全新的模型,叫 ...

  7. 四、springBoot 优雅的创建定时任务

    前言 好几天没写了,工作有点忙,最近工作刚好做一个定时任务统计的,所以就将springboot 如何创建定时任务整理了一下. 总的来说,springboot创建定时任务是非常简单的,不用像spring ...

  8. Spring boot使用log4j打印日志

    先将maven中spring-boot-starter的日志spring-boot-starter-logging去掉 <dependency> <groupId>org.sp ...

  9. python + selenium 环境搭建及问题

    搭建平台windows 准备工具如下: ------------------------------------------------------------- 下载python https://w ...

  10. 23种设计模式之装饰器模式(Decorator Pattern)

    装饰器模式(Decorator Pattern) 允许向一个现有的对象添加新的功能,同时又不改变其结构.这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装. 这种模式创建了一个装饰类,用来包 ...