使用opencv训练分类器时,traincascade训练报错:Train dataset for temp stage can not be filled.解决方法
opencv分类器训练中,出错一般都是路径出错,例如,
1.opencv_traincascade.exe路径

2.负样本路径文件,neg.dat中的样本前路径是否正确

3.移植到别的电脑并修改完路径后,最好重新生成正样本描述文件,pos.vec
4.同时修改cmd命令中的相关路径

5.我总感觉cmd命令或者opencv训练程序有记忆功能,修改了参数还是训练报错,我一般会重启电脑,或者将cmd命令薄.bat文件修改个名字
6.附录训练时的各种参数
Command line arguments of opencv_traincascade application grouped by purposes:
- Common arguments:
-data <cascade_dir_name>: Where the trained classifier should be stored. This folder should be created manually beforehand.-vec <vec_file_name>: vec-file with positive samples (created by opencv_createsamples utility).-bg <background_file_name>: Background description file. This is the file containing the negative sample images.-numPos <number_of_positive_samples>: Number of positive samples used in training for every classifier stage.-numNeg <number_of_negative_samples>: Number of negative samples used in training for every classifier stage.-numStages <number_of_stages>: Number of cascade stages to be trained.-precalcValBufSize <precalculated_vals_buffer_size_in_Mb>: Size of buffer for precalculated feature values (in Mb). The more memory you assign the faster the training process, however keep in mind that-precalcValBufSizeand-precalcIdxBufSizecombined should not exceed you available system memory.-precalcIdxBufSize <precalculated_idxs_buffer_size_in_Mb>: Size of buffer for precalculated feature indices (in Mb). The more memory you assign the faster the training process, however keep in mind that-precalcValBufSizeand-precalcIdxBufSizecombined should not exceed you available system memory.-baseFormatSave: This argument is actual in case of Haar-like features. If it is specified, the cascade will be saved in the old format. This is only available for backwards compatibility reasons and to allow users stuck to the old deprecated interface, to at least train models using the newer interface.-numThreads <max_number_of_threads>: Maximum number of threads to use during training. Notice that the actual number of used threads may be lower, depending on your machine and compilation options. By default, the maximum available threads are selected if you built OpenCV with TBB support, which is needed for this optimization.-acceptanceRatioBreakValue <break_value>: This argument is used to determine how precise your model should keep learning and when to stop. A good guideline is to train not further than 10e-5, to ensure the model does not overtrain on your training data. By default this value is set to -1 to disable this feature.
- Cascade parameters:
-stageType <BOOST(default)>: Type of stages. Only boosted classifiers are supported as a stage type at the moment.-featureType<{HAAR(default), LBP}>: Type of features: HAAR - Haar-like features, LBP - local binary patterns.-w <sampleWidth>: Width of training samples (in pixels). Must have exactly the same value as used during training samples creation (opencv_createsamples utility).-h <sampleHeight>: Height of training samples (in pixels). Must have exactly the same value as used during training samples creation (opencv_createsamples utility).
- Boosted classifer parameters:
-bt <{DAB, RAB, LB, GAB(default)}>: Type of boosted classifiers: DAB - Discrete AdaBoost, RAB - Real AdaBoost, LB - LogitBoost, GAB - Gentle AdaBoost.-minHitRate <min_hit_rate>: Minimal desired hit rate for each stage of the classifier. Overall hit rate may be estimated as (min_hit_rate ^ number_of_stages), [180] §4.1.-maxFalseAlarmRate <max_false_alarm_rate>: Maximal desired false alarm rate for each stage of the classifier. Overall false alarm rate may be estimated as (max_false_alarm_rate ^ number_of_stages), [180] §4.1.-weightTrimRate <weight_trim_rate>: Specifies whether trimming should be used and its weight. A decent choice is 0.95.-maxDepth <max_depth_of_weak_tree>: Maximal depth of a weak tree. A decent choice is 1, that is case of stumps.-maxWeakCount <max_weak_tree_count>: Maximal count of weak trees for every cascade stage. The boosted classifier (stage) will have so many weak trees (<=maxWeakCount), as needed to achieve the given-maxFalseAlarmRate.
- Haar-like feature parameters:
-mode <BASIC (default) | CORE | ALL>: Selects the type of Haar features set used in training. BASIC use only upright features, while ALL uses the full set of upright and 45 degree rotated feature set. See [103] for more details.
- Local Binary Patterns parameters: Local Binary Patterns don't have parameters.
After the opencv_traincascade application has finished its work, the trained cascade will be saved in cascade.xml file in the -data folder. Other files in this folder are created for the case of interrupted training, so you may delete them after completion of training.
Training is finished and you can test your cascade classifier!
Visualising Cascade Classifiers
From time to time it can be usefull to visualise the trained cascade, to see which features it selected and how complex its stages are. For this OpenCV supplies a opencv_visualisation application. This application has the following commands:
--image(required) : path to a reference image for your object model. This should be an annotation with dimensions [-w,-h] as passed to both opencv_createsamples and opencv_traincascade application.--model(required) : path to the trained model, which should be in the folder supplied to the-dataparameter of the opencv_traincascade application.--data(optional) : if a data folder is supplied, which has to be manually created beforehand, stage output and a video of the features will be stored.
知识付费时代,觉得对您有帮助的,别忘了打赏,附微信收款码

使用opencv训练分类器时,traincascade训练报错:Train dataset for temp stage can not be filled.解决方法的更多相关文章
- 输入指令npx webpack-dev-server报错:Error: Cannot find module ‘webpack-cli/bin/config-yargs‘的解决方法
输入指令npx webpack-dev-server报错:Error: Cannot find module 'webpack-cli/bin/config-yargs'的解决方法 输入指令:npx ...
- 运行python脚本时,报错InsecurePlatformWarning: A true SSLContext object is not available,解决方法
今天,要在新环境里运行一个python脚本,遇到下面的报错: /usr/lib/python2.7/site-packages/urllib3/util/ssl_.py:160: InsecurePl ...
- 小程序报错Do not have xx handler in current page的解决方法
看到小程序这一大串的“Do not have bindName handler in current page: pages/card/card. Please make sure that bind ...
- phpmyadmin登录报错crypt_random_string requires at least one symmetric cipher be loaded 解决方法
通过phpmyadmin登陆时提示以下错误: phpmyadmin crypt_random_string requires at least one symmetric cipher be load ...
- Myeclipse运行报错:an out of memory error has occurred的解决方法
不知道怎么了,重装的myeclipse2013,里边就放了一个项目,启动myeclipse就报 an out of memory error has occurred....... 一点yes就退出 ...
- centos在yum install报错:Another app is currently holding the yum lock解决方法
centos在yum install报错:Another app is currently holding the yum lock,这个问题可能是很多的新手经常遇到问题,之前也有人问我,包括本人在刚 ...
- Oracle 安装报错 [INS-06101] IP address of localhost could not be determined 解决方法[转]
--安装Oracle 11gR2,报错:[INS-06101] IP address of localhost could not be determined--------------------- ...
- JMeter3.0启动日志报错WARN - org.jmeterplugins.repository.Plugin: Unable to load class解决方法
解决方法: 通过sh find-in-jars 'HlsSampler' -d /data/apache-jmeter-3.0/lib/ext/确定这个class文件在哪个jar包 由于find-in ...
- Oracle 安装报错 [INS-06101] IP address of localhost could not be determined 解决方法
安装Oracle 11gR2,报错:[INS-06101] IP address of localhost could not be determined 出现这种错误是因为主机名和/etc/host ...
随机推荐
- 使用charls抓包微信小程序的解决方案(终极解决,各种坑不怕,亲测可用,不服来战!)
第一步:使用charles进行https抓包 https://www.jianshu.com/p/7a88617ce80b 使用charles进行https抓包 使用Charles进行HTTPS抓 ...
- Vue-Router中History模式
目录 history路由 官方示例 Express中间件 客户端兜底404 示例代码托管在:http://www.github.com/dashnowords/blogs 博客园地址:<大史住在 ...
- docker方式部署elk日志搜索平台
Docker部署ELKF操作文档 前提介绍 1.之前搭建elk+f+k使用原生系统软件安装方式,由于docker镜像日趋成熟,docker官网和elastic官网都有相关镜像和各自安装文档可供参考,各 ...
- python之爬虫-必应壁纸
python之爬虫-必应壁纸 import re import requests """ @author RansySun @create 2019-07-19-20:2 ...
- idea打包失败时,强行打包
set target_jar="E:\handSight\fras\Jars" cd Jars del fras-.jar rem 拉取最新代码 call git pull ech ...
- Shell总结1
1.错误输入重定向,将状态输入到d.txt 2.cut取列 free -m|grep “^Mem”|cut -d “ ” -f19 找内存 3. 4.cat看文件显示行号 5.查看文件空白行的行号 ...
- Redis学习总结(九)-- Redis常用技巧
这里会记录下Redis 常用的小技巧 全局使用 redis-cli 等命令 在之前我们都在做 Redis 命令目录下通过 ./redis-cli这种形式访问,如果使用 redis-cli 的话就会报命 ...
- JS函数提升和变量提升
1.1什么是函数提升和变量的提升? JS引擎在运行整个JS代码的过程中,分为俩步. 第一步是读取和解析JS代码,第二部是执行. 在引擎解析JS代码的时候,当解析器遇见变量声明(var 变量名)和函数声 ...
- yield 实现range()函数
def range(*args,step= 1): args = list(args) if len(args) == 2: yield args[0] while args[0]<args[1 ...
- pickle 都写文件
import pickle mylist=[[1,2,3,4,5,6,7],["abc","xyz","hello"],[1,2,3,4,5 ...