使用opencv训练分类器时,traincascade训练报错:Train dataset for temp stage can not be filled.解决方法
opencv分类器训练中,出错一般都是路径出错,例如,
1.opencv_traincascade.exe路径
2.负样本路径文件,neg.dat中的样本前路径是否正确
3.移植到别的电脑并修改完路径后,最好重新生成正样本描述文件,pos.vec
4.同时修改cmd命令中的相关路径
5.我总感觉cmd命令或者opencv训练程序有记忆功能,修改了参数还是训练报错,我一般会重启电脑,或者将cmd命令薄.bat文件修改个名字
6.附录训练时的各种参数
Command line arguments of opencv_traincascade application grouped by purposes:
- Common arguments:
-data <cascade_dir_name>
: Where the trained classifier should be stored. This folder should be created manually beforehand.-vec <vec_file_name>
: vec-file with positive samples (created by opencv_createsamples utility).-bg <background_file_name>
: Background description file. This is the file containing the negative sample images.-numPos <number_of_positive_samples>
: Number of positive samples used in training for every classifier stage.-numNeg <number_of_negative_samples>
: Number of negative samples used in training for every classifier stage.-numStages <number_of_stages>
: Number of cascade stages to be trained.-precalcValBufSize <precalculated_vals_buffer_size_in_Mb>
: Size of buffer for precalculated feature values (in Mb). The more memory you assign the faster the training process, however keep in mind that-precalcValBufSize
and-precalcIdxBufSize
combined should not exceed you available system memory.-precalcIdxBufSize <precalculated_idxs_buffer_size_in_Mb>
: Size of buffer for precalculated feature indices (in Mb). The more memory you assign the faster the training process, however keep in mind that-precalcValBufSize
and-precalcIdxBufSize
combined should not exceed you available system memory.-baseFormatSave
: This argument is actual in case of Haar-like features. If it is specified, the cascade will be saved in the old format. This is only available for backwards compatibility reasons and to allow users stuck to the old deprecated interface, to at least train models using the newer interface.-numThreads <max_number_of_threads>
: Maximum number of threads to use during training. Notice that the actual number of used threads may be lower, depending on your machine and compilation options. By default, the maximum available threads are selected if you built OpenCV with TBB support, which is needed for this optimization.-acceptanceRatioBreakValue <break_value>
: This argument is used to determine how precise your model should keep learning and when to stop. A good guideline is to train not further than 10e-5, to ensure the model does not overtrain on your training data. By default this value is set to -1 to disable this feature.
- Cascade parameters:
-stageType <BOOST(default)>
: Type of stages. Only boosted classifiers are supported as a stage type at the moment.-featureType<{HAAR(default), LBP}>
: Type of features: HAAR - Haar-like features, LBP - local binary patterns.-w <sampleWidth>
: Width of training samples (in pixels). Must have exactly the same value as used during training samples creation (opencv_createsamples utility).-h <sampleHeight>
: Height of training samples (in pixels). Must have exactly the same value as used during training samples creation (opencv_createsamples utility).
- Boosted classifer parameters:
-bt <{DAB, RAB, LB, GAB(default)}>
: Type of boosted classifiers: DAB - Discrete AdaBoost, RAB - Real AdaBoost, LB - LogitBoost, GAB - Gentle AdaBoost.-minHitRate <min_hit_rate>
: Minimal desired hit rate for each stage of the classifier. Overall hit rate may be estimated as (min_hit_rate ^ number_of_stages), [180] §4.1.-maxFalseAlarmRate <max_false_alarm_rate>
: Maximal desired false alarm rate for each stage of the classifier. Overall false alarm rate may be estimated as (max_false_alarm_rate ^ number_of_stages), [180] §4.1.-weightTrimRate <weight_trim_rate>
: Specifies whether trimming should be used and its weight. A decent choice is 0.95.-maxDepth <max_depth_of_weak_tree>
: Maximal depth of a weak tree. A decent choice is 1, that is case of stumps.-maxWeakCount <max_weak_tree_count>
: Maximal count of weak trees for every cascade stage. The boosted classifier (stage) will have so many weak trees (<=maxWeakCount), as needed to achieve the given-maxFalseAlarmRate
.
- Haar-like feature parameters:
-mode <BASIC (default) | CORE | ALL>
: Selects the type of Haar features set used in training. BASIC use only upright features, while ALL uses the full set of upright and 45 degree rotated feature set. See [103] for more details.
- Local Binary Patterns parameters: Local Binary Patterns don't have parameters.
After the opencv_traincascade application has finished its work, the trained cascade will be saved in cascade.xml
file in the -data
folder. Other files in this folder are created for the case of interrupted training, so you may delete them after completion of training.
Training is finished and you can test your cascade classifier!
Visualising Cascade Classifiers
From time to time it can be usefull to visualise the trained cascade, to see which features it selected and how complex its stages are. For this OpenCV supplies a opencv_visualisation application. This application has the following commands:
--image
(required) : path to a reference image for your object model. This should be an annotation with dimensions [-w
,-h
] as passed to both opencv_createsamples and opencv_traincascade application.--model
(required) : path to the trained model, which should be in the folder supplied to the-data
parameter of the opencv_traincascade application.--data
(optional) : if a data folder is supplied, which has to be manually created beforehand, stage output and a video of the features will be stored.
知识付费时代,觉得对您有帮助的,别忘了打赏,附微信收款码
使用opencv训练分类器时,traincascade训练报错:Train dataset for temp stage can not be filled.解决方法的更多相关文章
- 输入指令npx webpack-dev-server报错:Error: Cannot find module ‘webpack-cli/bin/config-yargs‘的解决方法
输入指令npx webpack-dev-server报错:Error: Cannot find module 'webpack-cli/bin/config-yargs'的解决方法 输入指令:npx ...
- 运行python脚本时,报错InsecurePlatformWarning: A true SSLContext object is not available,解决方法
今天,要在新环境里运行一个python脚本,遇到下面的报错: /usr/lib/python2.7/site-packages/urllib3/util/ssl_.py:160: InsecurePl ...
- 小程序报错Do not have xx handler in current page的解决方法
看到小程序这一大串的“Do not have bindName handler in current page: pages/card/card. Please make sure that bind ...
- phpmyadmin登录报错crypt_random_string requires at least one symmetric cipher be loaded 解决方法
通过phpmyadmin登陆时提示以下错误: phpmyadmin crypt_random_string requires at least one symmetric cipher be load ...
- Myeclipse运行报错:an out of memory error has occurred的解决方法
不知道怎么了,重装的myeclipse2013,里边就放了一个项目,启动myeclipse就报 an out of memory error has occurred....... 一点yes就退出 ...
- centos在yum install报错:Another app is currently holding the yum lock解决方法
centos在yum install报错:Another app is currently holding the yum lock,这个问题可能是很多的新手经常遇到问题,之前也有人问我,包括本人在刚 ...
- Oracle 安装报错 [INS-06101] IP address of localhost could not be determined 解决方法[转]
--安装Oracle 11gR2,报错:[INS-06101] IP address of localhost could not be determined--------------------- ...
- JMeter3.0启动日志报错WARN - org.jmeterplugins.repository.Plugin: Unable to load class解决方法
解决方法: 通过sh find-in-jars 'HlsSampler' -d /data/apache-jmeter-3.0/lib/ext/确定这个class文件在哪个jar包 由于find-in ...
- Oracle 安装报错 [INS-06101] IP address of localhost could not be determined 解决方法
安装Oracle 11gR2,报错:[INS-06101] IP address of localhost could not be determined 出现这种错误是因为主机名和/etc/host ...
随机推荐
- golang学习(1)---快速hello world
很多著名的计算机语言都是一两个人在业余时间捣鼓出来的,但是Go语言是由Google的团队打造的.可能一些基础的知识点我不会细讲,因为这个时代你真的得快速学习,才能适应发展. 来看看go的hello, ...
- Java学习|多线程学习笔记
什么是线程? 可以理解为进程中独立运行的字任务. 使用多线程: 1.继承Thread类:从源码可以看到,Thread累实现了Runnable接口. 如果多次调用st ...
- 提取html内的文字1
public static string StripHTML(string strHtml) { string [] aryReg ={ @"<scrip ...
- java算法(4)---静态内部类实现雪花算法
静态内部类单例模式实现雪花算法 在生成表主键ID时,我们可以考虑主键自增 或者 UUID,但它们都有很明显的缺点 主键自增:1.自增ID容易被爬虫遍历数据.2.分表分库会有ID冲突. UUID: 1. ...
- spring-boot-plus快速开始 Quick Start(一)
spring-boot-plus快速开始 Quick Start 1. clone项目到本地 shell script git clone git@github.com:geekidea/spring ...
- 关于js-xlsx的使用
写在前头,本人是名Java开发人员,偶尔在前端打打酱油,写出的代码或许存在问题,请路过的大神一一指正,不吝感激. 最近公司准备做一些关于Excel 数据导入和导出相关需求,之前有在开源社区看到说比起纯 ...
- python-day16
一.正则表达式 regular expression -----regex 验证匹配正则表达式使用单个字符串来描述.匹配一系列匹配某个句法规则的字符串.在很多文本编辑器里,正则表达式通常被用来检索.替 ...
- Python 开发学习路线
第一阶段:Python 语言基础 数据类型 流程控制 常用模块 函数.迭代器.装饰器 递归.迭代.反射 面向对象编程 购物车程序 计算器程序开发 模拟人生游戏开发 第二阶段:网络编程 Socket c ...
- MySQL之修改默认引擎和字符集
一.数据库引擎 1.1 查看数据库引擎 mysql> show engines; +--------------------+---------+------------------------ ...
- Python机器学习笔记:不得不了解的机器学习知识点(2)
之前一篇笔记: Python机器学习笔记:不得不了解的机器学习知识点(1) 1,什么样的资料集不适合用深度学习? 数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势. 数据集没有局 ...