opencv分类器训练中,出错一般都是路径出错,例如,

1.opencv_traincascade.exe路径

2.负样本路径文件,neg.dat中的样本前路径是否正确

3.移植到别的电脑并修改完路径后,最好重新生成正样本描述文件,pos.vec

4.同时修改cmd命令中的相关路径

5.我总感觉cmd命令或者opencv训练程序有记忆功能,修改了参数还是训练报错,我一般会重启电脑,或者将cmd命令薄.bat文件修改个名字

6.附录训练时的各种参数

Command line arguments of opencv_traincascade application grouped by purposes:

  • Common arguments:

    • -data <cascade_dir_name> : Where the trained classifier should be stored. This folder should be created manually beforehand.
    • -vec <vec_file_name> : vec-file with positive samples (created by opencv_createsamples utility).
    • -bg <background_file_name> : Background description file. This is the file containing the negative sample images.
    • -numPos <number_of_positive_samples> : Number of positive samples used in training for every classifier stage.
    • -numNeg <number_of_negative_samples> : Number of negative samples used in training for every classifier stage.
    • -numStages <number_of_stages> : Number of cascade stages to be trained.
    • -precalcValBufSize <precalculated_vals_buffer_size_in_Mb> : Size of buffer for precalculated feature values (in Mb). The more memory you assign the faster the training process, however keep in mind that -precalcValBufSize and -precalcIdxBufSize combined should not exceed you available system memory.
    • -precalcIdxBufSize <precalculated_idxs_buffer_size_in_Mb> : Size of buffer for precalculated feature indices (in Mb). The more memory you assign the faster the training process, however keep in mind that -precalcValBufSize and -precalcIdxBufSize combined should not exceed you available system memory.
    • -baseFormatSave : This argument is actual in case of Haar-like features. If it is specified, the cascade will be saved in the old format. This is only available for backwards compatibility reasons and to allow users stuck to the old deprecated interface, to at least train models using the newer interface.
    • -numThreads <max_number_of_threads> : Maximum number of threads to use during training. Notice that the actual number of used threads may be lower, depending on your machine and compilation options. By default, the maximum available threads are selected if you built OpenCV with TBB support, which is needed for this optimization.
    • -acceptanceRatioBreakValue <break_value> : This argument is used to determine how precise your model should keep learning and when to stop. A good guideline is to train not further than 10e-5, to ensure the model does not overtrain on your training data. By default this value is set to -1 to disable this feature.
  • Cascade parameters:
    • -stageType <BOOST(default)> : Type of stages. Only boosted classifiers are supported as a stage type at the moment.
    • -featureType<{HAAR(default), LBP}> : Type of features: HAAR - Haar-like features, LBP - local binary patterns.
    • -w <sampleWidth> : Width of training samples (in pixels). Must have exactly the same value as used during training samples creation (opencv_createsamples utility).
    • -h <sampleHeight> : Height of training samples (in pixels). Must have exactly the same value as used during training samples creation (opencv_createsamples utility).
  • Boosted classifer parameters:
    • -bt <{DAB, RAB, LB, GAB(default)}> : Type of boosted classifiers: DAB - Discrete AdaBoost, RAB - Real AdaBoost, LB - LogitBoost, GAB - Gentle AdaBoost.
    • -minHitRate <min_hit_rate> : Minimal desired hit rate for each stage of the classifier. Overall hit rate may be estimated as (min_hit_rate ^ number_of_stages), [180] §4.1.
    • -maxFalseAlarmRate <max_false_alarm_rate> : Maximal desired false alarm rate for each stage of the classifier. Overall false alarm rate may be estimated as (max_false_alarm_rate ^ number_of_stages), [180] §4.1.
    • -weightTrimRate <weight_trim_rate> : Specifies whether trimming should be used and its weight. A decent choice is 0.95.
    • -maxDepth <max_depth_of_weak_tree> : Maximal depth of a weak tree. A decent choice is 1, that is case of stumps.
    • -maxWeakCount <max_weak_tree_count> : Maximal count of weak trees for every cascade stage. The boosted classifier (stage) will have so many weak trees (<=maxWeakCount), as needed to achieve the given -maxFalseAlarmRate.
  • Haar-like feature parameters:
    • -mode <BASIC (default) | CORE | ALL> : Selects the type of Haar features set used in training. BASIC use only upright features, while ALL uses the full set of upright and 45 degree rotated feature set. See [103] for more details.
  • Local Binary Patterns parameters: Local Binary Patterns don't have parameters.

After the opencv_traincascade application has finished its work, the trained cascade will be saved in cascade.xml file in the -data folder. Other files in this folder are created for the case of interrupted training, so you may delete them after completion of training.

Training is finished and you can test your cascade classifier!

Visualising Cascade Classifiers

From time to time it can be usefull to visualise the trained cascade, to see which features it selected and how complex its stages are. For this OpenCV supplies a opencv_visualisation application. This application has the following commands:

  • --image (required) : path to a reference image for your object model. This should be an annotation with dimensions [-w,-h] as passed to both opencv_createsamples and opencv_traincascade application.
  • --model (required) : path to the trained model, which should be in the folder supplied to the -data parameter of the opencv_traincascade application.
  • --data (optional) : if a data folder is supplied, which has to be manually created beforehand, stage output and a video of the features will be stored.

知识付费时代,觉得对您有帮助的,别忘了打赏,附微信收款码

使用opencv训练分类器时,traincascade训练报错:Train dataset for temp stage can not be filled.解决方法的更多相关文章

  1. 输入指令npx webpack-dev-server报错:Error: Cannot find module ‘webpack-cli/bin/config-yargs‘的解决方法

    输入指令npx webpack-dev-server报错:Error: Cannot find module 'webpack-cli/bin/config-yargs'的解决方法 输入指令:npx ...

  2. 运行python脚本时,报错InsecurePlatformWarning: A true SSLContext object is not available,解决方法

    今天,要在新环境里运行一个python脚本,遇到下面的报错: /usr/lib/python2.7/site-packages/urllib3/util/ssl_.py:160: InsecurePl ...

  3. 小程序报错Do not have xx handler in current page的解决方法

    看到小程序这一大串的“Do not have bindName handler in current page: pages/card/card. Please make sure that bind ...

  4. phpmyadmin登录报错crypt_random_string requires at least one symmetric cipher be loaded 解决方法

    通过phpmyadmin登陆时提示以下错误: phpmyadmin crypt_random_string requires at least one symmetric cipher be load ...

  5. Myeclipse运行报错:an out of memory error has occurred的解决方法

    不知道怎么了,重装的myeclipse2013,里边就放了一个项目,启动myeclipse就报 an out of memory error has occurred....... 一点yes就退出 ...

  6. centos在yum install报错:Another app is currently holding the yum lock解决方法

    centos在yum install报错:Another app is currently holding the yum lock,这个问题可能是很多的新手经常遇到问题,之前也有人问我,包括本人在刚 ...

  7. Oracle 安装报错 [INS-06101] IP address of localhost could not be determined 解决方法[转]

    --安装Oracle 11gR2,报错:[INS-06101] IP address of localhost could not be determined--------------------- ...

  8. JMeter3.0启动日志报错WARN - org.jmeterplugins.repository.Plugin: Unable to load class解决方法

    解决方法: 通过sh find-in-jars 'HlsSampler' -d /data/apache-jmeter-3.0/lib/ext/确定这个class文件在哪个jar包 由于find-in ...

  9. Oracle 安装报错 [INS-06101] IP address of localhost could not be determined 解决方法

    安装Oracle 11gR2,报错:[INS-06101] IP address of localhost could not be determined 出现这种错误是因为主机名和/etc/host ...

随机推荐

  1. Nunit与Xunit介绍

    Nunit安装 首先说下,nunit2.X与3.X版本需要安装不同的vs扩展. nunit2.x安装 安装如上3个,辅助创建nunit测试项目与在vs中运行单元测试用例 . 1.Nunit2 Test ...

  2. Ubuntu 17 安装Chrome浏览器

    1.进入下载文件存放目录 cd Downloads 2.下载chrome文件 2.1 32位使用如下命令 wget https://dl.google.com/linux/direct/google- ...

  3. Sqlserver将表中某列数据以符号分成多行

    WITH testtb2 AS ( UNION ALL ) ) ) ) ) PERCENT SUBSTRING(VisitorCard, STA - LENS, LENS) AS OrderReque ...

  4. spark读取pg数据库报错操作符不存在

    代码: Properties connectionProperties = new Properties(); connectionProperties.put("user", C ...

  5. TDH 安装 TDH-Client

    1. TDH-Client 下载 (下载分享:链接:https://pan.baidu.com/s/1ZmP4BUCiuRypCtsoAuvKRA     提取码:xsbl ) tar -vxf td ...

  6. LoRaWAN_stack移植笔记(三)__SPI

    stm32相关的配置 由于例程使用的主控芯片为STM32L151C8T6,而在本设计中使用的主控芯片为STM32L051C8T6,内核不一样,并且Cube库相关的函数接口及配置也会有不同,所以芯片的驱 ...

  7. Windows 10“数字权利激活”永久性激活!!!

    直接运行软件即可自动激活,等出现"激活成功"即可关闭软件. 注意事项: 激活软件不会帮你打开Windows update服务,如关闭系统自动更细服务的需要先启动服务. 可以在小娜搜 ...

  8. 前端利器躬行记(2)——Babel

    Babel是一个JavaScript编译器,不仅能将当前运行环境不支持的JavaScript语法(例如ES6.ES7等)编译成向下兼容的可用语法(例如ES3或ES5),这其中会涉及新语法的转换和缺失特 ...

  9. .net core 在 Docker 开发下的巨坑

    一,Docker 的安装 Windows 安装  Docker 官方文档: https://docs.microsoft.com/zh-cn/virtualization/windowscontain ...

  10. Oracle数据库之四 简单查询

    四.简单查询 ​ 简单查询的主要特征就是将一张数据表之中的全部数据行进行显示,而后可以利用 SELECT 子句来控制所需要的输出列. 4.1.基础语法 范例:查询 emp 表中的数据(全部数据查询) ...