Matplotlib 基础

注:本文中的程序都默认引入了numpy库和matplotlib库,并且分别简写为np与plt;如果读者不知道怎么使用numpy库,可以移步到这一博客上进行简单的学习

一、简单绘图案例

#简单的画图例子
x=np.linspace(0,1,num=200)#横坐标
y1=x**2#纵坐标1
y2=x*3+0.2#纵坐标2
#图片框1
plt.figure(1)
plt.plot(x,y1, label='line1')#绘制曲线
plt.plot(x,y2, linewidth=5, color='coral', linestyle='--', label='line2')#绘制不同风格的曲线
plt.legend()
#图片框2
plt.figure(2)
plt.plot(x,y2)
plt.show()#显示

显示结果:

二、设置坐标轴

#坐标轴设置
x=np.linspace(0,1,num=200)
y1=x**2
#图片框1
plt.figure(1)
plt.plot(x,y1)#绘制曲线
#坐标轴设置
plt.xlim((0,1))#x轴取值范围
plt.ylim((0,1))#y轴取值范围
plt.xlabel('x')#x轴轴标
plt.ylabel('y')#y轴轴标
#x轴ticks设置
new_ticks=np.linspace(0,1,5)
plt.xticks(new_ticks)
#设置绘图坐标轴的位置
axis=plt.gca()#获取当前的坐标轴
axis.spines['left'].set_position(('data', 0.1))#将y轴设置到x轴上为1的位置
axis.spines['bottom'].set_position(('data', 0.5))#将x轴设置到y轴上为1的位置
plt.show()

输出结果:

三、图片标注

#图片标注
x=np.linspace(0,1,num=200)
y1=x**2
plt.figure(1)
plt.plot(x,y1,label='line 1')#绘制曲线,label设置为1
plt.legend()
#设置绘图坐标轴的位置
axis=plt.gca()#获取当前的坐标轴
axis.spines['left'].set_position(('data', 0))#将y轴设置到x轴上为0的位置
axis.spines['bottom'].set_position(('data', 0))#将x轴设置到y轴上为0的位置
#被标注点
x0=0.5
y0=0.5**2
plt.scatter(x0, y0, s=30, color='red')#通过散点图来绘制点
plt.plot([x0,x0],[y0,0], color='black', linestyle='--',linewidth=3)#绘制一条垂直于x轴的虚线
#添加标注
plt.annotate('annotation', [x0+0.1,y0], fontsize=10)#在坐标[x0+0.1,y0]处添加标注
plt.show()

输出结果:

四、设置坐标轴游标字体大小

#操作坐标轴的label
x=np.linspace(0,2,num=200)
y1=x**2
#图片框1
plt.figure(1)
plt.plot(x,y1)#绘制曲线
#坐标轴设置
plt.xlim((0,2))#x轴取值范围
plt.ylim((0,2))#y轴取值范围
ax=plt.gca()#拿到现在的坐标轴
for label in ax.get_xticklabels() +ax.get_yticklabels():
label.set_fontsize(12)#设置坐标轴label的字体大小
plt.show()

输出结果:

五、绘制散点图

# scatter 散点图
x=np.random.normal(0,1,100)
y=np.random.normal(0,1,100)
plt.scatter(x,y, s=50, c='blue',marker='o',alpha=0.6)
plt.show()

六、柱状图

x=np.arange(0,10, step=1)
y=np.arange(0,10, step=1)
plt.bar(x,y, color='red', width=0.3)
#在每一个柱形图上面添加文字标注
for x0,y0 in zip(x,y):
plt.text(x0,y0, '%i'%y0)
plt.show()

输出为:

七、等高线图

#等高线图
x=np.linspace(0,10, 100)
y=np.linspace(0,10, 100)
x_m,y_m=np.meshgrid(x,y)#网格化
z=x_m**2+y_m**2
plt.contourf(x_m, y_m, z, 10, alpha=0.5, cmap=plt.cm.hot)#绘制热图,10代表着高度的分级
c=plt.contour(x_m,y_m, z, 10, colors='black', linewidth=11)#绘制等高线
plt.clabel(c, inline=True, fontsize=10)#为等高线添加标注
plt.show()

八、3D绘图

#3D绘图
from mpl_toolkits.mplot3d import Axes3D
x=np.linspace(0,10, 100)
y=np.linspace(-10,10, 100)
x_m,y_m=np.meshgrid(x,y)#网格化
z=x_m**2+y_m**2
fig=plt.figure()
ax=Axes3D(fig)#为figure添加3D坐标轴
ax.plot_surface(x_m, y_m, z,rstride=5, cstride=5, cmap=plt.cm.hot)#绘制3D的表面, rstide为行跨度,cstride为列跨度
ax.contourf(x_m, y_m, z, zdir='z',offset=6)#offset指的是等高线图与xy平面之间的距离, zdir设置投影方向
plt.show()

九、subplot 绘制多个图

#subplot,绘制子图像
x=np.linspace(0,1,100)
y=x**2 plt.figure()
plt.subplot(2, 2,1)#将figure划分为2*2,在编号为1的位置绘图
plt.plot(x,y) plt.subplot(2, 2,2)#将figure划分为2*2,在编号为2的位置绘图
plt.plot(x,x) plt.subplot(2, 2,3)#将figure划分为2*2,在编号为3的位置绘图
plt.plot(y,y) plt.subplot(2, 2,4)#将figure划分为2*2,在编号为4的位置绘图
plt.plot(y,y) plt.show()

matplotlib基础的更多相关文章

  1. 数据分析与展示——Matplotlib基础绘图函数示例

    Matplotlib库入门 Matplotlib基础绘图函数示例 pyplot基础图表函数概述 函数 说明 plt.plot(x,y,fmt, ...) 绘制一个坐标图 plt.boxplot(dat ...

  2. Matplotlib基础图形之散点图

    Matplotlib基础图形之散点图 散点图特点: 1.散点图显示两组数据的值,每个点的坐标位置由变量的值决定 2.由一组不连续的点组成,用于观察两种变量的相关性(正相关,负相关,不相关) 3.例如: ...

  3. Matplotlib基础知识

    Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis水平和垂直的轴线 x轴和y轴刻度 tick刻度标示坐标轴的分隔,包括最小刻度和最大刻度 x轴和y轴刻度标签 ...

  4. Matplotlib基础使用

    matplotlib 一.Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis 水平和垂直的轴线 x轴和y轴刻度 tick 刻度标示坐标轴的分隔,包括最小刻度 ...

  5. 模块简介与matplotlib基础

    模块简介与matplotlib基础 1.基本概念 1.1数据分析 对已知的数据进行分析,提取出一些有价值的信息. 1.2数据挖掘 对大量的数据进行分析与挖掘,得到一些未知的,有价值的信息. 1.3数据 ...

  6. [笔记]SciPy、Matplotlib基础操作

    NumPy.SciPy.Matplotlib,Python下机器学习三大利器.上一篇讲了NumPy基础操作,这节讲讲SciPy和Matplotlib.目前接触到的东西不多,以后再遇到些比较常用的再更新 ...

  7. 第二周 数据分析之展示 Matplotlib基础绘图函数实例

    Pyplot基础图表函数 Pyplot饼图的绘制: Pyplot直方图的绘制: Pyplot极坐标图的绘制: Pyplot散点图的绘制: 单元小结: import numpy as np import ...

  8. python数据图形化—— matplotlib 基础应用

    matplotlib是python中常用的数据图形化工具,用法跟matlab有点相似.调用简单,功能强大.在Windows下可以通过命令行 pip install matplotlib 来进行安装. ...

  9. python画图matplotlib基础笔记

    numpy~~基础计算库,多维数组处理 scipy~~基于numpy,用于数值计算等等,默认调用intel mkl(高度优化的数学库) pandas~~强大的数据框,基于numpy matplotli ...

随机推荐

  1. C#数组1

    using System; namespace ConsoleApp3 { class Program { static void Main(string[] args) { , , , , , }; ...

  2. css 行内水平均等排布方式

    <div class="justify"> <span>测试1</span> <span>测试2</span> < ...

  3. Android开发:getSupportFragmentManager()不可用

    getSupportFragmentManager()这个函数不可用显然是因为activity继承错误了,因此我们需要将整个类的所继承的类改变即可 public class MainActivity ...

  4. 一文解读AI芯片之间的战争 (转)

    2015年的秋天,北京的雨水比往年要多些,温度却不算太冷.这一年里,年仅23岁的姚颂刚刚拿到清华大学的毕业证书;32岁的陈天石博士毕业后已在中科院计算所待了整整8年;而在芯片界摸爬滚打了14年的老将何 ...

  5. 【XML】XML基本结构以及XML-Schema约束

    XML 简介 1998年2月,W3C正式批准了可扩展标记语言的标准定义,可扩展标记语言可以对文档和数据进行结构化处理,从而能够在部门.客户和供应商之间进行交换,实现动态内容生成,企业集成和应用开发.可 ...

  6. Linux 查看端口机服务

    Linux如何查看端口 1.lsof -i:端口号 用于查看某一端口的占用情况,比如查看8000端口使用情况,lsof -i:8000 2.2.netstat -tunlp |grep 端口号,用于查 ...

  7. 如何将MagicaVoxel模型导入UE4中(1)

    前言 当初在选择自己项目的美术风格时,由于自己的美术基础实在是太差,所以选择了体素风格来构建(其实还是MagicaVoxel的建模操作很容易上手),但是将自己千辛万苦做好的模型导入至项目中时,出现了这 ...

  8. springmvc+strut2比较

    常见web框架中Struts2和SpringMVC独占鳌头,SpringMVC和Struts有什么不同? 我们可以从各个方面进行对比: 一:框架的思想设计上 SpringMVC控制器是基于方法上拦截, ...

  9. Web-babyphp

    题目地址 http://web.jarvisoj.com:32798/ 首先先观察网页,点击about发现下面包含这些 看到GIT,那么基本可以明确这题有.git泄露,我们用GitHack来获取源码分 ...

  10. DIV 自定义滚动条样式(二)

    流浏览器自带的滚动条样式很丑,确实有必要美化. 滚动条从外观来看是由两部分组成:1,可以滑动的部分,我们叫它滑块2,滚动条的轨道,即滑块的轨道,一般来说滑块的颜色比轨道的颜色深. 滚动条的css样式主 ...