matplotlib基础
Matplotlib 基础
注:本文中的程序都默认引入了numpy库和matplotlib库,并且分别简写为np与plt;如果读者不知道怎么使用numpy库,可以移步到这一博客上进行简单的学习
一、简单绘图案例
#简单的画图例子
x=np.linspace(0,1,num=200)#横坐标
y1=x**2#纵坐标1
y2=x*3+0.2#纵坐标2
#图片框1
plt.figure(1)
plt.plot(x,y1, label='line1')#绘制曲线
plt.plot(x,y2, linewidth=5, color='coral', linestyle='--', label='line2')#绘制不同风格的曲线
plt.legend()
#图片框2
plt.figure(2)
plt.plot(x,y2)
plt.show()#显示
显示结果:

二、设置坐标轴
#坐标轴设置
x=np.linspace(0,1,num=200)
y1=x**2
#图片框1
plt.figure(1)
plt.plot(x,y1)#绘制曲线
#坐标轴设置
plt.xlim((0,1))#x轴取值范围
plt.ylim((0,1))#y轴取值范围
plt.xlabel('x')#x轴轴标
plt.ylabel('y')#y轴轴标
#x轴ticks设置
new_ticks=np.linspace(0,1,5)
plt.xticks(new_ticks)
#设置绘图坐标轴的位置
axis=plt.gca()#获取当前的坐标轴
axis.spines['left'].set_position(('data', 0.1))#将y轴设置到x轴上为1的位置
axis.spines['bottom'].set_position(('data', 0.5))#将x轴设置到y轴上为1的位置
plt.show()
输出结果:

三、图片标注
#图片标注
x=np.linspace(0,1,num=200)
y1=x**2
plt.figure(1)
plt.plot(x,y1,label='line 1')#绘制曲线,label设置为1
plt.legend()
#设置绘图坐标轴的位置
axis=plt.gca()#获取当前的坐标轴
axis.spines['left'].set_position(('data', 0))#将y轴设置到x轴上为0的位置
axis.spines['bottom'].set_position(('data', 0))#将x轴设置到y轴上为0的位置
#被标注点
x0=0.5
y0=0.5**2
plt.scatter(x0, y0, s=30, color='red')#通过散点图来绘制点
plt.plot([x0,x0],[y0,0], color='black', linestyle='--',linewidth=3)#绘制一条垂直于x轴的虚线
#添加标注
plt.annotate('annotation', [x0+0.1,y0], fontsize=10)#在坐标[x0+0.1,y0]处添加标注
plt.show()
输出结果:

四、设置坐标轴游标字体大小
#操作坐标轴的label
x=np.linspace(0,2,num=200)
y1=x**2
#图片框1
plt.figure(1)
plt.plot(x,y1)#绘制曲线
#坐标轴设置
plt.xlim((0,2))#x轴取值范围
plt.ylim((0,2))#y轴取值范围
ax=plt.gca()#拿到现在的坐标轴
for label in ax.get_xticklabels() +ax.get_yticklabels():
label.set_fontsize(12)#设置坐标轴label的字体大小
plt.show()
输出结果:

五、绘制散点图
# scatter 散点图
x=np.random.normal(0,1,100)
y=np.random.normal(0,1,100)
plt.scatter(x,y, s=50, c='blue',marker='o',alpha=0.6)
plt.show()

六、柱状图
x=np.arange(0,10, step=1)
y=np.arange(0,10, step=1)
plt.bar(x,y, color='red', width=0.3)
#在每一个柱形图上面添加文字标注
for x0,y0 in zip(x,y):
plt.text(x0,y0, '%i'%y0)
plt.show()
输出为:

七、等高线图
#等高线图
x=np.linspace(0,10, 100)
y=np.linspace(0,10, 100)
x_m,y_m=np.meshgrid(x,y)#网格化
z=x_m**2+y_m**2
plt.contourf(x_m, y_m, z, 10, alpha=0.5, cmap=plt.cm.hot)#绘制热图,10代表着高度的分级
c=plt.contour(x_m,y_m, z, 10, colors='black', linewidth=11)#绘制等高线
plt.clabel(c, inline=True, fontsize=10)#为等高线添加标注
plt.show()

八、3D绘图
#3D绘图
from mpl_toolkits.mplot3d import Axes3D
x=np.linspace(0,10, 100)
y=np.linspace(-10,10, 100)
x_m,y_m=np.meshgrid(x,y)#网格化
z=x_m**2+y_m**2
fig=plt.figure()
ax=Axes3D(fig)#为figure添加3D坐标轴
ax.plot_surface(x_m, y_m, z,rstride=5, cstride=5, cmap=plt.cm.hot)#绘制3D的表面, rstide为行跨度,cstride为列跨度
ax.contourf(x_m, y_m, z, zdir='z',offset=6)#offset指的是等高线图与xy平面之间的距离, zdir设置投影方向
plt.show()

九、subplot 绘制多个图
#subplot,绘制子图像
x=np.linspace(0,1,100)
y=x**2 plt.figure()
plt.subplot(2, 2,1)#将figure划分为2*2,在编号为1的位置绘图
plt.plot(x,y) plt.subplot(2, 2,2)#将figure划分为2*2,在编号为2的位置绘图
plt.plot(x,x) plt.subplot(2, 2,3)#将figure划分为2*2,在编号为3的位置绘图
plt.plot(y,y) plt.subplot(2, 2,4)#将figure划分为2*2,在编号为4的位置绘图
plt.plot(y,y) plt.show()

matplotlib基础的更多相关文章
- 数据分析与展示——Matplotlib基础绘图函数示例
Matplotlib库入门 Matplotlib基础绘图函数示例 pyplot基础图表函数概述 函数 说明 plt.plot(x,y,fmt, ...) 绘制一个坐标图 plt.boxplot(dat ...
- Matplotlib基础图形之散点图
Matplotlib基础图形之散点图 散点图特点: 1.散点图显示两组数据的值,每个点的坐标位置由变量的值决定 2.由一组不连续的点组成,用于观察两种变量的相关性(正相关,负相关,不相关) 3.例如: ...
- Matplotlib基础知识
Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis水平和垂直的轴线 x轴和y轴刻度 tick刻度标示坐标轴的分隔,包括最小刻度和最大刻度 x轴和y轴刻度标签 ...
- Matplotlib基础使用
matplotlib 一.Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis 水平和垂直的轴线 x轴和y轴刻度 tick 刻度标示坐标轴的分隔,包括最小刻度 ...
- 模块简介与matplotlib基础
模块简介与matplotlib基础 1.基本概念 1.1数据分析 对已知的数据进行分析,提取出一些有价值的信息. 1.2数据挖掘 对大量的数据进行分析与挖掘,得到一些未知的,有价值的信息. 1.3数据 ...
- [笔记]SciPy、Matplotlib基础操作
NumPy.SciPy.Matplotlib,Python下机器学习三大利器.上一篇讲了NumPy基础操作,这节讲讲SciPy和Matplotlib.目前接触到的东西不多,以后再遇到些比较常用的再更新 ...
- 第二周 数据分析之展示 Matplotlib基础绘图函数实例
Pyplot基础图表函数 Pyplot饼图的绘制: Pyplot直方图的绘制: Pyplot极坐标图的绘制: Pyplot散点图的绘制: 单元小结: import numpy as np import ...
- python数据图形化—— matplotlib 基础应用
matplotlib是python中常用的数据图形化工具,用法跟matlab有点相似.调用简单,功能强大.在Windows下可以通过命令行 pip install matplotlib 来进行安装. ...
- python画图matplotlib基础笔记
numpy~~基础计算库,多维数组处理 scipy~~基于numpy,用于数值计算等等,默认调用intel mkl(高度优化的数学库) pandas~~强大的数据框,基于numpy matplotli ...
随机推荐
- go-客户信息关系系统
客户信息关系系统 项目需求分析 1) 模拟实现基于文本界面的< 客户信息管理软件>. 2) 该软件能够实现对客户对象的插入.修改和删除(用切片实现),并能够打印客户明细表 项目的界面设计 ...
- springboot服务的一些问题
一: springboot踩坑记--springboot正常启动但访问404; 1. spring boot的启动类不能直接放在main(src.java.main)这个包下面,把它放在有包的里面就可 ...
- 2019年上半年收集到的人工智能GAN干货文章
2019年上半年收集到的人工智能GAN干货文章 GAN简介及其常见应用 训练GAN,你应该知道的二三事 了解生成对抗网络(GAN) CosmoGAN:训练GAN,让AI寻找宇宙中的暗物质 关于GAN的 ...
- mysql-python 安装错误 fatal error C1083: Cannot open include file: 'config-win.h': No such file or directory
安装mysql-python之前, 请先安装setuptools. https://pypi.python.org/pypi/setuptools/7.0 下载mysql-python. 下载源码包. ...
- JavaScript—字符串(String)用法
字符串(String)去除空格 str = " hello python " // 去除左空格: str=str.replace( /^\s*/, ''); // 去除右空格: s ...
- 解决vue+springboot前后端分离项目,前端跨域访问sessionID不一致导致的session为null问题
问题: 前端跨域访问后端接口, 在浏览器的安全策略下默认是不携带cookie的, 所以每次请求都开启了一次新的会话. 在后台打印sessionID我们会发现, 每次请求的sessionID都是不同的, ...
- __rpm.so: underfined symbol : rpmpkgverifySigs 故障分析
前言: 近期漏洞修复频繁,各种组件需要升级,经多次碰撞,发现 yum update 来升级组件是最有效最安全的方式(绿盟通过版本比对的扫描结果可以忽略). 然而,各家的设备各家管,一到升级就发现一堆问 ...
- ScratchJr是什么,有什么作用
什么是ScratchJr? ScratchJr是一个入门级的编程语言,可以让5到7岁的小朋友去创建他们的互动故事和游戏.孩子们使用图形化的程序积木让角色移动.跳跃.舞蹈.唱歌.孩子们可以利用绘图编辑器 ...
- Onenote添加代码
使用Onenote做笔记的时候,是没有直接插入代码的,但是如果可以插入的话很方便. 这个是我找的一个参考,照这个来就行. 参考链接: https://www.cnblogs.com/two-peanu ...
- 各版本mysql修改root密码
今天在安装mysql5.7.8的时候遇到一些问题,首当其冲便的是初始root密码的变更,特分享解决方法如下: 1.mysql5.7会生成一个初始化密码,而在之前的版本首次登陆不需要登录. shell& ...