题目传送门

枚举每个点作为最大值的那个点。
然后既然是作为最大值出现的话,那么这个点就是不需要被减去的,因为如果最小值也在这个区间内的话,2者都减去1,对答案没有影响,如果是最小值不出现在这个区间内的话,那么就是变亏了。
然后如果我们枚举每个点作为起点的话,然后每次都是便利所有的区间,然后用线段树维护区间加减法,复杂度是n*m*lgn的。
尝试了一次,然后TLE了。
所以我们可以先把所有的能减去都减去。
然后在从左往右扫描的过程中时,我们每次出现在一条线的左端点的时候,就把这个区间内的删除还原,离开这个区间的时候,就把这个区间内的数再删除回去。这样对于每一段区间最多只有2个删除,1次增加。总的复杂度是 n + m * lgn。

代码:

/*
code by: zstu wxk
time: 2019/01/27
*/
#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 1e5 + ;
int Wa(){return rand()%;}
void Hack(int n){srand(time());int hack = ;for(int j = ; j <= n; ++j)hack += Wa();if(hack == n)puts("OH No!");}
int n, m;
pll p[N];
int Mn[N<<], lz[N<<];
int a[N];
void PushUp(int rt){
Mn[rt] = min(Mn[rt<<], Mn[rt<<|]);
}
void Build(int l, int r, int rt){
if(l == r){
Mn[rt] = a[l];
return ;
}
int m = l+r >> ;
Build(lson); Build(rson);
PushUp(rt);
}
void PushDown(int rt){
if(lz[rt]){
lz[rt<<] += lz[rt];
lz[rt<<|] += lz[rt];
Mn[rt<<] += lz[rt];
Mn[rt<<|] += lz[rt];
lz[rt] = ;
}
}
void Update(int L, int R, int C, int l, int r, int rt){
if(L <= l && r <= R){
Mn[rt] += C;
lz[rt] += C;
return ;
}
PushDown(rt);
int m = l+r >> ;
if(L <= m) Update(L,R,C,lson);
if(m < R) Update(L,R,C,rson);
PushUp(rt);
}
vector<int> Lp[N], Rp[N];
void Ac(){
for(int i = ; i <= n; ++i)
scanf("%d", &a[i]);
Build(,n,);
for(int i = ; i <= m; ++i){
scanf("%d%d", &p[i].fi, &p[i].se);
Lp[ p[i].fi ].pb(p[i].se);
Rp[ p[i].se ].pb(p[i].fi);
Update(p[i].fi, p[i].se, -, ,n, );
}
int ans = , id;
for(int i = ; i <= n; ++i){
for(int j : Rp[i-])
Update(j, i-, -, , n, );
for(int j : Lp[i])
Update(i, j, , , n, );
int tmp = a[i] - Mn[];
if(tmp > ans)
ans = tmp, id = i;
}
printf("%d\n", ans);
int cnt = ;
for(int j = ; j <= m; ++j){
if(id < p[j].fi || p[j].se < id) cnt++;
}
printf("%d\n", cnt);
for(int j = ; j <= m; ++j){
if(id < p[j].fi || p[j].se < id)
printf("%d ", j);
}
}
int main(){
while(~scanf("%d%d", &n, &m)){
Ac();
}
return ;
}

CF - 1108 E 枚举上界+线段树维护的更多相关文章

  1. [BZOJ 1018] [SHOI2008] 堵塞的交通traffic 【线段树维护联通性】

    题目链接:BZOJ - 1018 题目分析 这道题就说明了刷题少,比赛就容易跪..SDOI Round1 Day2 T3 就是与这道题类似的..然而我并没有做过这道题.. 这道题是线段树维护联通性的经 ...

  2. [动态dp]线段树维护转移矩阵

    背景:czy上课讲了新知识,从未见到过,总结一下. 所谓动态dp,是在动态规划的基础上,需要维护一些修改操作的算法. 这类题目分为如下三个步骤:(都是对于常系数齐次递推问题) 1先不考虑修改,不考虑区 ...

  3. [Noi2016]区间[离散化+线段树维护+决策单调性]

    4653: [Noi2016]区间 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 621  Solved: 329[Submit][Status][D ...

  4. 【8.26校内测试】【重构树求直径】【BFS模拟】【线段树维护DP】

    题目性质比较显然,相同颜色联通块可以合并成一个点,重新建树后,发现相邻两个点的颜色一定是不一样的. 然后发现,对于一条链来说,每次把一个点反色,实际上使点数少了2个.如下图 而如果一条链上面有分支,也 ...

  5. [BZOJ1018][SHOI2008]堵塞的交通traffic 线段树维护连通性

    1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec  Memory Limit: 162 MB Submit: 3795  Solved: 1253 [Sub ...

  6. 牛客多校第十场 F Popping Balloons 线段树维护稀疏矩阵

    题意: 给定一个稀疏矩阵,里面有若干个气球,让你横着开三枪,竖着开三枪,问最多能打爆多少气球,要求相同方向,相邻两枪必须间隔r. 题解: 横向记录每列有多少个气球,分别在哪行上. 然后把这个数据改造成 ...

  7. 洛谷 P7879 -「SWTR-07」How to AK NOI?(后缀自动机+线段树维护矩乘)

    洛谷题面传送门 orz 一发出题人(话说我 AC 这道题的时候,出题人好像就坐在我的右侧呢/cy/cy) 考虑一个很 naive 的 DP,\(dp_i\) 表示 \([l,i]\) 之间的字符串是否 ...

  8. 2016shenyang-1002-HDU5893-List wants to travel-树链剖分+线段树维护不同区间段个数

    肯定先无脑树链剖分,然后线段树维护一段区间不同个数,再维护一个左右端点的费用. 线段树更新,pushDown,pushUp的时候要注意考虑链接位置的费用是否相同 还有就是树链剖分操作的时候,维护上一个 ...

  9. Codeforces GYM 100114 D. Selection 线段树维护DP

    D. Selection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descriptio ...

随机推荐

  1. 【iOS】Receiver type 'XXX' for instance message is a forward declaration

    今天遇到这个错误.刚开始字体太大,没显示全,后来调小字体之后看到了完整提示信息: 之后就忽然想起没引入相关的类,添加 #import "RDVTabBarItem.h" 就行了.

  2. SpringBoot Jar包瘦身 - 跟大文件说再见!

    前言 SpringBoot部署起来配置非常少,如果服务器部署在公司内网,上传速度还行,但是如果部署在公网(阿里云等云服务器上),部署起来实在头疼.就是 编译出来的 Jar 包很大,如果工程引入了许多开 ...

  3. 【POJ - 2456】Aggressive cows(二分)

    Aggressive cows 直接上中文了 Descriptions 农夫 John 建造了一座很长的畜栏,它包括N (2 <= N <= 100,000)个隔间,这些小隔间依次编号为x ...

  4. JDBC连接池-C3P0连接

    JDBC连接池-C3P0连接 c3p0连接池的学习英语好的看英文原版      c3p0 - JDBC3 Connection and Statement Pooling 使用c3p0连接池  三种方 ...

  5. 简单聊聊红黑树(Red Black Tree)

    ​ 前言 众所周知,红黑树是非常经典,也很非常重要的数据结构,自从1972年被发明以来,因为其稳定高效的特性,40多年的时间里,红黑树一直应用在许多系统组件和基础类库中,默默无闻的为我们提供服务,身边 ...

  6. S2:log4j

    配置步骤 1.引入jar,放到lib中,jar包被项目管理 2.在src目录下copy了一个文件log4j.properties 3.使用Logger   String word="会员登记 ...

  7. 分布式ID系列(4)——Redis集群实现的分布式ID适合做分布式ID吗

    首先是项目地址: https://github.com/maqiankun/distributed-id-redis-generator 关于Redis集群生成分布式ID,这里要先了解redis使用l ...

  8. C语言编程入门之--第五章C语言基本运算和表达式-part1

    导读:程序要完成高级功能,首先要能够做到基本的加减乘除.本章从程序中变量的概念开始,结合之前学的输出函数和新介绍的输入函数制作简单人机交互程序,然后讲解最基础的加减法运算,自制简单计算器程序练手. 5 ...

  9. 【Java例题】1.3给朋友的贺卡

    3.对“Hello World”程序进行改造, 能够显示一张发给朋友的贺卡.格式如下: ****************************** 张三,你好! 祝你学习愉快! 你的好朋友:李四 2 ...

  10. C#实现简单爬虫

    分享之前写过的一个爬虫,采集数据,存入数据库的简单实现. github地址:https://github.com/CodesCreator/biu-biu-biu-