Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. Maybe you are a good boy, and know little about this game, so I introduce it to you now.

The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path. 
Your task is to output the maximum value according to the given chessmen list. 

InputInput contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N 
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int. 
A test case starting with 0 terminates the input and this test case is not to be processed. 
OutputFor each case, print the maximum according to rules, and one line one case. 
Sample Input

3 1 3 2
4 1 2 3 4
4 3 3 2 1
0

Sample Output

4
10
3 求一串递增的数字总和的最大值 借这里放下最长上升子序列的模板(求最大长度和最大总和的)
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<string>
#include<cmath>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const int inf = 1e9;
int a[], dp[], num[], n;
int calc( int sign ) { //求最长,nlog(n)
fill( dp, dp+, inf );
int ans = ;
for( int i = ; i < n; i ++ ) {
int index = lower_bound( dp, dp+ans, a[i]*sign ) - dp; //lower为求严格递增,upper为求非严格递增
dp[index] = a[i]*sign;
ans = max( ans, index + );
}
return ans;
}
int lins() {
return calc();
}
int lnds() {
return calc(-);
}
int calc_max() { //求最大,n^2
int ans = ;
for( int i = ; i < n; i ++ ) {
dp[i] = a[i];
for( int j = ; j < i; j ++ ) {
if( a[j] < a[i] ) {
dp[i] = max( dp[i], dp[j]+a[i] );
}
}
ans = max( ans, dp[i] );
}
return ans;
}
int main() {
std::ios::sync_with_stdio(false);
while( cin >> n ) {
memset( num, , sizeof(num) );
if( !n ) {
break;
}
for( int i = ; i < n; i ++ ) {
cin >> a[i];
}
cout << calc_max() << endl;
}
return ;
}

最长上升子序列模板 hdu 1087 Super Jumping! Jumping! Jumping!的更多相关文章

  1. 【最长上升子序列】HDU 1087——Super Jumping! Jumping! Jumping!

    来源:点击打开链接 最长上升子序列的考察,是一个简单的DP问题.我们每一次求出从第一个数到当前这个数的最长上升子序列,直至遍历到最后一个数字为止,然后再取dp数组里最大的那个即为整个序列的最长上升子序 ...

  2. HDU 1087 Super Jumping! Jumping! Jumping

    HDU 1087 题目大意:给定一个序列,只能走比当前位置大的位置,不可回头,求能得到的和的最大值.(其实就是求最大上升(可不连续)子序列和) 解题思路:可以定义状态dp[i]表示以a[i]为结尾的上 ...

  3. HDU 1087 Super Jumping! Jumping! Jumping! 最长递增子序列(求可能的递增序列的和的最大值) *

    Super Jumping! Jumping! Jumping! Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64 ...

  4. HDU - 1087 Super Jumping!Jumping!Jumping!(dp求最长上升子序列的和)

    传送门:HDU_1087 题意:现在要玩一个跳棋类游戏,有棋盘和棋子.从棋子st开始,跳到棋子en结束.跳动棋子的规则是下一个落脚的棋子的号码必须要大于当前棋子的号码.st的号是所有棋子中最小的,en ...

  5. hdu 1087 Super Jumping!(类最长上升子序列)

    题意:在一组数中选取一个上升子序列,使得这个子序列的和最大. 解:和最长上升子序列dp过程相似,设dp[i]为以第i位为结尾最大和,那么dp[i]等于max(dp[0],dp[1],,,,,dp[i- ...

  6. HDU 1087 Super Jumping! Jumping! Jumping! (动态规划、最大上升子序列和)

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  7. HDU 1087 Super Jumping! Jumping! Jumping! --- DP入门之最大递增子序列

    DP基础题 DP[i]表示以a[i]结尾所能得到的最大值 但是a[n-1]不一定是整个序列能得到的最大值 #include <bits/stdc++.h> using namespace ...

  8. HDU 1087 Super Jumping! Jumping! Jumping! --- DP入门之最大上升子序列

    题目链接 DP基础题 求的是上升子序列的最大和 而不是最长上升子序列LIS DP[i]表示以a[i]结尾所能得到的最大值 但是a[n-1]不一定是整个序列能得到的最大值 #include <bi ...

  9. HDU 1087 Super Jumping! Jumping! Jumping!(求LSI序列元素的和,改一下LIS转移方程)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1087 Super Jumping! Jumping! Jumping! Time Limit: 20 ...

随机推荐

  1. Python之assert断言语句

    关键字assert构成断言语句,主要是可以在我们书写一个新的程序时,可以使用它帮我们锁定bug范围. 表达式: assert 表达式 ‘窗口提示的信息’ 括号中的项目为选填项目,选填项目将会在表达式的 ...

  2. EditText 使用详解

    极力推荐文章:欢迎收藏 Android 干货分享 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以下内容: 一.EditText 继承关系 二.EditText 常用 ...

  3. 封装 Gson 解析Json到对象是否失败

    在使用Google的 Gson 类库解析 Json 数据时,难免会出现解析失败的情况. 在这种情况下,使用 if(obj == null) 是不可行的,fromJson 方法会自动生成对象的实例,所以 ...

  4. c++/c关于函数指针

    顺便提一句:指针也是一种变量类型 和 int double 这些类型是一个级别 不同的是它的值是地址 #include "stdafx.h"#include<stdlib.h ...

  5. java并发编程(二十四)----(JUC集合)ArrayBlockingQueue和LinkedBlockingQueue介绍

    这一节我们来了解阻塞队列(BlockingQueue),BlockingQueue接口定义了一种阻塞的FIFO queue,每一个BlockingQueue都有一个容量,当容量满时往BlockingQ ...

  6. javascript数组去重 js数组去重

    数组去重的方法 一.利用ES6 Set去重(ES6中最常用) function unique (arr) { return Array.from(new Set(arr)) } var arr = [ ...

  7. resolv.conf文件配置相关的案例

    引言 操作系统中/etc/resolv.conf配置文件中的内容一般为空,如果该文件配置不正确,将导致ssh.route.netstat命令响应慢的问题. 在/etc/resolv.conf添加错误地 ...

  8. 《统计学习方法》极简笔记P5:决策树公式推导

    <统计学习方法>极简笔记P2:感知机数学推导 <统计学习方法>极简笔记P3:k-NN数学推导 <统计学习方法>极简笔记P4:朴素贝叶斯公式推导

  9. Python-PostgreSQL的使用

    一.安装PostgreSQL模块 yum install postgresql-devel pip3 install psycopg2 注意:安装时遇到./psycopg/psycopg.h:35:2 ...

  10. 第一次接触Linux

    一:文件目录操作命令 (一)创建文件           vim  文件名           按i进入插入模式           写完文件后,先按Esc,           再输入     :w ...