偏差和方差以及偏差方差权衡(Bias Variance Trade off)
当我们在机器学习领域进行模型训练时,出现的误差是如何分类的?
我们首先来看一下,什么叫偏差(Bias),什么叫方差(Variance):

这是一张常见的靶心图
可以看左下角的这一张图,如果我们的目标是打靶子的话,我们所有的点全都完全的偏离了这个中心的位置,那么这种情况就叫做偏差
再看右上角这张图片,我么们的目标是右上角这张图片中心的红色位置,我们射击的点都围绕在这个红色的点的周围,没有大的偏差,但是各个点间过于分散不集中,就是有非常高的方差
模型误差 = 偏差(Bias) + 方差(Variance) + 不可避免的误差
不可避免的误差: 客观存在的误差,例如采集的数据的噪音等,是我们无法避免的
- 有一些算法天生是高方差的算法。如kNN,决策树等
- 非参数学习通常都是高方差算法。因为不对数据进行任何假设
- 有一些算法天生是高偏差算法。如线性回归
- 参数学习通常都是高偏差算法。因为堆数据具有极强的假设
大多数算法具有相应的参数,可以调整偏差和方差, 比如kNN中的k和线性回归中使用多项式回归。
偏差和方差通常是矛盾的,我们要在两者之间找到一个平衡
在机器学习领域,主要的挑战来自方差,当然主要是在算法方面,实际问题中原因不尽相同
解决高方差的通常手段:
1.降低模型复杂度
2.减少数据维度;降噪
3.增加样本数
4.使用验证集
5.模型正则化
偏差和方差以及偏差方差权衡(Bias Variance Trade off)的更多相关文章
- 【笔记】偏差方差权衡 Bias Variance Trade off
偏差方差权衡 Bias Variance Trade off 什么叫偏差,什么叫方差 根据下图来说 偏差可以看作为左下角的图片,意思就是目标为红点,但是没有一个命中,所有的点都偏离了 方差可以看作为右 ...
- 机器学习:偏差方差权衡(Bias Variance Trade off)
一.什么是偏差和方差 偏差(Bias):结果偏离目标位置: 方差(Variance):数据的分布状态,数据分布越集中方差越低,越分散方差越高: 在机器学习中,实际要训练模型用来解决一个问题,问题本身可 ...
- [转]理解 Bias 与 Variance 之间的权衡----------bias variance tradeoff
有监督学习中,预测误差的来源主要有两部分,分别为 bias 与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于 ...
- 斯坦福大学公开课机器学习: advice for applying machine learning | regularization and bais/variance(机器学习中方差和偏差如何相互影响、以及和算法的正则化之间的相互关系)
算法正则化可以有效地防止过拟合, 但正则化跟算法的偏差和方差又有什么关系呢?下面主要讨论一下方差和偏差两者之间是如何相互影响的.以及和算法的正则化之间的相互关系 假如我们要对高阶的多项式进行拟合,为了 ...
- Error=Bias+Variance
首先 Error = Bias + Variance Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输 ...
- Bias, Variance and the Trade-off
偏差,方差以及两者权衡 偏差是由模型简化的假设,使目标函数更容易学习. 一般来说,参数化算法有很高的偏差,使它们学习起来更快,更容易理解,但通常不那么灵活.反过来,它们在复杂问题上的预测性能更低,无法 ...
- 机器学习总结-bias–variance tradeoff
bias–variance tradeoff 通过机器学习,我们可以从历史数据学到一个\(f\),使得对新的数据\(x\),可以利用学到的\(f\)得到输出值\(f(x)\).设我们不知道的真实的\( ...
- 2.9 Model Selection and the Bias–Variance Tradeoff
结论 模型复杂度↑Bias↓Variance↓ 例子 $y_i=f(x_i)+\epsilon_i,E(\epsilon_i)=0,Var(\epsilon_i)=\sigma^2$ 使用knn做预测 ...
- 训练/验证/测试集设置;偏差/方差;high bias/variance;正则化;为什么正则化可以减小过拟合
1. 训练.验证.测试集 对于一个需要解决的问题的样本数据,在建立模型的过程中,我们会将问题的data划分为以下几个部分: 训练集(train set):用训练集对算法或模型进行训练过程: 验证集(d ...
随机推荐
- WinForm控件之【ListView】
基本介绍 项列表控件,拥有五种不同视图的样式供展示项集合. 常设置属性 Columns:‘详细信息’视图中用来显示的列: Groups:ListView列表中的组,将列表各项分组区域展示: Horiz ...
- Java中的Enumeration、Iterable和Iterator接口详解
前言 在看各类Java书籍或者博文的时候,总是会遇到Enumeration.Iterable和Iterator这三个接口,如果对这几个接口不是很明白的话,总会让自己看着看着就迷惑了,正好这周末,抽空把 ...
- 个人永久性免费-Excel催化剂功能第45波-逻辑判断函数增强
自定义函数的最大的作用是可以按需定制,在Excel的原生函数不提供的场景时,传统方法需要使用大量的嵌套函数去实现,实在太累,今天Excel催化剂再次送上一波绝对十分常用的函数逻辑判断类函数给大家使用! ...
- jenkins +Jmeter 完成分布式性能测试
1.Jmeter 压测机器配置. 下载Jmeter 版本:https://jmeter.apache.org/download_jmeter.cgi 我下的是5.1.1 将下载后的版本进行解压. ...
- Kafka集群部署以及使用
Kafka集群部署 部署步骤 hadoop102 hadoop103 hadoop104 zk zk zk kafka kafka kafka http://kafka.apache.org/down ...
- Elasticsearch 7.x Nested 嵌套类型查询 | ES 干货
一.什么是 ES Nested 嵌套 Elasticsearch 有很多数据类型,大致如下: 基本数据类型: string 类型.ES 7.x 中,string 类型会升级为:text 和 keywo ...
- python常见模块-collections-time-datetime-random-os-sys-序列化反序列化模块(json-pickle)-subprocess-03
collections模块-数据类型扩展模块 ''' 在内置数据类型(dict.list.set.tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter.deque ...
- C语言中的“>>”和“
先说左移,左移就是把一个数的所有位都向左移动若干位,在C中用<<运算符.例如: int i = 1; i = i << 2; //把i里的值左移2位 也就是说,1的2进制是00 ...
- List集合源码解读
一:总述: 主要讲解3个集合 1.ArrayList: 底层是数组,线程不安全: 2.LinkedList: 底层是链表,线程不安全: 3.Vector 底层数据结构是数组.线程安全: 二:Ar ...
- difflib python
difflib -帮助进行差异化比较 这个模块提供的类和方法用来进行差异化比较,它能够生成文本或者html格式的差异化比较结果,如果需要比较目录的不同,可以使用filecmp模块. 例子: # -*- ...