给一个长度为 n 的杆子,切成小段卖出去,价格根据小段的长度不同而不同。下面是一个例子

我们要通过切成小段卖出尽可能高的总价钱。问题是:How to decompose the problem?

Decomposition 的第一步是:第一刀切在哪?可以切在最左边(等于整根卖出去);可以切在位置1,位置2,。。。

关键的一点是,刀切下去后,左半段就不再切了,继续切右半段。切右半段就变成了一个subproblem。

Naive Recursion:

Top-down implementation:

Bottom-up implementation: 不容易构想,变量 j 是 subproblem's size,从1递增到n,变量 i 用来把每个subproblem 拆分成更小的subproblem,而根据我们这种计算的顺序,当计算 size = j 的时候,< j 的 subproblem 已经计算完毕了。

[DP] Rod-cutting problem的更多相关文章

  1. 动态规划法(五)钢条切割问题(rod cutting problem)

      继续讲故事~~   我们的主人公现在已经告别了生于斯,长于斯的故乡,来到了全国最大的城市S市.这座S市,位于国家的东南部,是全国的经济中心,工商业极为发达,是这个国家的人民所向往的城市.这个到处都 ...

  2. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

  3. 递推DP HDOJ 5328 Problem Killer

    题目传送门 /* 递推DP: 如果a, b, c是等差数列,且b, c, d是等差数列,那么a, b, c, d是等差数列,等比数列同理 判断ai-2, ai-1, ai是否是等差(比)数列,能在O( ...

  4. rod cutting

    for a rod of length i the price of it si pi,to cut the rod to earn more money package dynamic_progra ...

  5. [Java 8] (9) Lambda表达式对递归的优化(下) - 使用备忘录模式(Memoization Pattern) .

    使用备忘录模式(Memoization Pattern)提高性能 这个模式说白了,就是将需要进行大量计算的结果缓存起来,然后在下次需要的时候直接取得就好了.因此,底层只需要使用一个Map就够了. 但是 ...

  6. 【HDU 5909】 Tree Cutting (树形依赖型DP+点分治)

    Tree Cutting Problem Description Byteasar has a tree T with n vertices conveniently labeled with 1,2 ...

  7. 10003 Cutting Sticks(区间dp)

      Cutting Sticks  You have to cut a wood stick into pieces. The most affordable company, The Analog ...

  8. UVA 10003 Cutting Sticks(区间dp)

    Description    Cutting Sticks  You have to cut a wood stick into pieces. The most affordable company ...

  9. BZOJ1003 物流运输 最短路+DP

    1003: [ZJOI2006]物流运输 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条 ...

  10. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

随机推荐

  1. NUMA CPU optimization

    technologies:  OS, CPU cache, numa structure, memory access

  2. volley+NetworkImageView实现列表界面的列表项中的左侧图标展现之【实现已经加载的列表项的图标上翻的时候不重新加载】

    参考资料:http://blog.csdn.net/guolin_blog/article/details/17482165 我使用的列表的适配器是继承ArrayAdapter的,所以关于使用voll ...

  3. JAXB - The JAXB Context

    As we have seen, an object of the class JAXBContext must be constructed as a starting point for othe ...

  4. 《JAVA核心技术卷 卷1 基础知识》

    第一卷 关键字:体系结构中立,可移植性,高性能,多线程 体系机构中立:通过解释字节码实现,优点是,让JAVA能在很多机器上运行.缺点是运行速度很慢. 可移植性:因为JAVA的基本数据类型有固定的大小. ...

  5. sql索引碎片产生的原理 解决碎片的办法(sql碎片整理)(转)

    本文讲述了SQL SERVER中碎片产生的原理,内部碎片和外部碎片的概念.以及解决碎片的办法和填充因子.在数据库中,往往每一个对于某一方面性能增加的功能也会伴随着另一方面性能的减弱.系统的学习数据库知 ...

  6. JDBC向oracle插入数据

    public static void main(String[] args) throws SQLException { 2 3 4 String driver="oracle.jdbc.d ...

  7. java取随机数

    一, 指定的特定几个数据集合里按“随机顺序”全部取出 一碰到随机, 可能第一个想到的是用Math.Random() 来处理, 其实java本身提供了现成的类 通过 “打乱顺序”来处理“随机”问题 方法 ...

  8. ios简单数据库运用

    一.添加类 二.打开数据库 三.创表 四.插入数据 五.取出数据 一.添加类 1.在设置Linked Frameworks and Libraries 中,点加号并添加libsqlite3.0.dyl ...

  9. Arithmetic Expression

    时间限制:2000ms 单点时限:200ms 内存限制:256MB 描述 Given N arithmetic expressions, can you tell whose result is cl ...

  10. ubuntu的syslog为空,停止写入解决方法

    修改syslog权限: chown syslog:adm syslog