题意:n条隧道由一些点连接而成,其中每条隧道链接两个连接点。任意两个连接点之间最多只有一条隧道。任务就是在这些连接点中,安装尽量少的太平井和逃生装置,使得不管哪个连接点倒塌,工人都能从其他太平井逃脱,求最少安装数量和方案。

思路:其实本题就相当于在一张无向图中,涂尽量少的黑点,使得任意删除哪个点,每个连通分量至少有一个黑点。因为不同的连通分量最多只有一个公共点,那一定是割点。可以发现,涂黑割点是不划算的,而且在 一个点-双连通分量中涂黑两个黑点也是不划算的。所以只有当点-双连通分量只有一个割点时,才需要涂,而且是任选一个非割点涂黑。

2011年final题,想法不是很好明白,联系实际再YY一下就懂了

 //struct ID 用来减小数字的,有点离散的作用。但是注释掉以后运行时间简短,AC
#include<cstdio>
#include<stack>
#include<vector>
#include<map>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long LL; struct Edge {
int u, v;
}; const int maxn = + ;
int pre[maxn], iscut[maxn], bccno[maxn], dfs_clock, bcc_cnt; // 割顶的bccno无意义
vector<int> G[maxn], bcc[maxn]; stack<Edge> S; int dfs(int u, int fa) {
int lowu = pre[u] = ++dfs_clock;
int child = ;
for(int i = ; i < G[u].size(); i++) {
int v = G[u][i];
Edge e = (Edge) {
u, v
};
if(!pre[v]) { // 没有访问过v
S.push(e);
child++;
int lowv = dfs(v, u);
lowu = min(lowu, lowv); // 用后代的low函数更新自己
if(lowv >= pre[u]) {
iscut[u] = true;
bcc_cnt++;
bcc[bcc_cnt].clear();
for(;;) {
Edge x = S.top();
S.pop();
if(bccno[x.u] != bcc_cnt) {
bcc[bcc_cnt].push_back(x.u);
bccno[x.u] = bcc_cnt;
}
if(bccno[x.v] != bcc_cnt) {
bcc[bcc_cnt].push_back(x.v);
bccno[x.v] = bcc_cnt;
}
if(x.u == u && x.v == v) break;
}
}
} else if(pre[v] < pre[u] && v != fa) {
S.push(e);
lowu = min(lowu, pre[v]); // 用反向边更新自己
}
}
if(fa < && child == ) iscut[u] = ;
return lowu;
} //struct ID {
// map<int, int> m;
// int cnt;
// ID():cnt(0) { }
// int get(int x) {
// if(!m.count(x)) m[x] = cnt++;
// return m[x];
// }
//}; int main() {
int kase = , n;
while(scanf("%d", &n) == && n) {
memset(pre, , sizeof(pre));
memset(iscut, , sizeof(iscut));
memset(bccno, , sizeof(bccno));
for(int i = ; i < n*; i++) G[i].clear();
dfs_clock = bcc_cnt = ; // ID id;
for(int i = ; i < n; i++) {
int u, v;
scanf("%d%d", &u, &v);
// u = id.get(u);
// v = id.get(v);
u--;
v--;
G[u].push_back(v);
G[v].push_back(u);
}
dfs(, -); // 调用结束后S保证为空,所以不用清空 LL ans1 = , ans2 = ;
for(int i = ; i <= bcc_cnt; i++) {
int cut_cnt = ;
for(int j = ; j < bcc[i].size(); j++)
if(iscut[bcc[i][j]]) cut_cnt++;
if(cut_cnt == ) {
ans1++;
ans2 *= (LL)(bcc[i].size() - cut_cnt);
}
}
if(bcc_cnt == ) {
ans1 = ;
ans2 = bcc[].size() * (bcc[].size() - ) / ;
}
printf("Case %d: %lld %lld\n", ++kase, ans1, ans2);
}
return ;
}

UVALive 5135 Mining Your Own Business 双连通分量 2011final的更多相关文章

  1. UVALive 5135 Mining Your Own Business 双连通分量

    据说这是一道Word Final的题,Orz... 原题链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&a ...

  2. UVALive - 5135 - Mining Your Own Business(双连通分量+思维)

    Problem   UVALive - 5135 - Mining Your Own Business Time Limit: 5000 mSec Problem Description John D ...

  3. UVALive - 5135 Mining Your Own Business

    刘汝佳白书上面的一道题目:题意是给定一个联通分量,求出割顶以及双连通分量的个数,并且要求出安放安全井的种类数,也就是每个双连通分量中结点数(除开 割顶)个数相乘,对于有2个及以上割顶的双连通分量可以不 ...

  4. LA 5135 井下矿工(点—双连通分量模板题)

    https://vjudge.net/problem/UVALive-5135 题意:在一个无向图上选择尽量少的点涂黑,使得任意删除一个点后,每个连通分量至少有一个黑点. 思路: 首先dfs遍历求出割 ...

  5. 【LA】5135 Mining Your Own Business

    [算法]点双连通分量 [题解]详见<算法竞赛入门竞赛入门经典训练指南>P318-319 细节在代码中用important标注. #include<cstdio> #includ ...

  6. UVALive 5135 Mining Your Own Bussiness【tarjan点双】

    LINK1 LINK2 题目大意 给你一个无向连通图,让你给一些点染上黑色,需要满足染色之后,断开任意一个节点,要满足任意一个联通块中剩下的节点中至少有一个黑点 思路 一开始想的是把每一个点双联通分量 ...

  7. LA 5135 Mining Your Own Business

    求出 bcc 后再……根据大白书上的思路即可. 然后我用的是自定义的 stack 类模板: #include<cstdio> #include<cstring> #includ ...

  8. 训练指南 UVALive - 5135 (双连通分量)

    layout: post title: 训练指南 UVALive - 5135 (双连通分量) author: "luowentaoaa" catalog: true mathja ...

  9. hdu3844 Mining Your Own Business,无向双连接组件

    点击打开链接 无向图的双连通分量 #include<cstdio> #include<stack> #include<vector> #include<map ...

随机推荐

  1. linux下修改IP信息

    在Linux的系统下如何才能修改IP信息 以前总是用ifconfig修改,重启后总是得重做.如果修改配置文件,就不用那么麻烦了- A.修改ip地址 即时生效: # ifconfig eth0 192. ...

  2. XSS传染基础——JavaScript中的opener、iframe

    最近研究XSS,根据etherDream大神的博客 延长XSS生命周期 写了一个子页面父页面相互修改的demo. 一. 子页面.父页面相互修改——window.opener.window.open 在 ...

  3. chrome extension/plugin path

    C:\Users\Administrator\AppData\Local\Google\Chrome\User Data\Default\Extensions

  4. <四> jQuery 事件

    $(document).ready(function) 将函数绑定到文档的就绪事件(当文档完成加载时) $(selector).click(function) 触发或将函数绑定到被选元素的点击事件 $ ...

  5. matlab vs python

    (参考)从下图可以清晰看到matlab和python之间的区别 Python是一种编程语言,但与其他变成语言的不同在于:python具有许多的扩展库(通过import引入) Matlab是集合计算环境 ...

  6. 取得inputStream的长度

    1.网络下载文件 URL url = new URL(strUrl); HttpURLConnection httpconn = (HttpURLConnection)url.openConnecti ...

  7. 回首Java(始)

    自接触Java开始,已然5载春秋. 如今每每在深入学习过程中,时刻感到力不从心. It's time!该拾起J2SE基石. 平地高楼,日积跬步.根底不坚实,如今才寸步维艰. 回头再温故.

  8. vim 分屏 screen

    上下分割,并打开一个新的文件. :sp filename 左右分割当前打开的文件. Ctrl+W v 左右分割,并打开一个新的文件. :vsp filename 移动光标 Vi中的光标键是h, j, ...

  9. Visual Studio 创建代码注释默认模版方法

    在日常的开发中我们经常需要为页面添加注释和版权等信息,这样我们就需要每次去拷贝粘贴同样的文字,为了减少这种重复性的工作,我们可以把这些信息保存在Visual Studio 2012类库模版文件里 1. ...

  10. 【Xamarin挖墙脚系列:Xamarin.IOS机制原理剖析】

    原文:[Xamarin挖墙脚系列:Xamarin.IOS机制原理剖析] [注意:]团队里总是有人反映卸载Xamarin,清理不完全.之前写过如何完全卸载清理剩余的文件.今天写了Windows下的批命令 ...