Description

C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。 
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的. 
 

Input

第一行一个整数T,表示有T组数据。 
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。 
接下来每行有一条命令,命令有4种形式: 
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30) 
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30); 
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数; 
(4)End 表示结束,这条命令在每组数据最后出现; 
每组数据最多有40000条命令 
 

Output

对第i组数据,首先输出“Case i:”和回车, 
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。 
 

Sample Input

1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
 

Sample Output

Case 1:
6
33
59

分析:这是典型的更新线段上的一个点然后查询线段上的区间的和,算是线段树的模版应用题目了,因为只有点更新,所有再找点的时候所有的节点都进行了更新,也就没必要再去做下压或者上升之类的更新了

******************************************************************************
#include<stdio.h>
#include<math.h>
#include<string.h> #define maxn 50005 struct node
{
    int L, R, sum;//左右子树,sum记录区间和
    int Mid(){return (L+R)/2;}
}tree[maxn*4];//为了保险起见一般定义是四倍
int val[maxn];//保存每个阵地原来的人数 void Build(int root, int L, int R)//建树
{
    tree[root].L = L, tree[root].R = R;     if(L == R)
    {
        tree[root].sum = val[L];
        return ;
    }     Build(root<<1, L, tree[root].Mid());//<<1 运算符相当于乘上 2,因为是数往左移一位
    Build(root<<1|1, tree[root].Mid()+1, R);//|1, 因为左移后最后一位是0, 所以与1进行|相当于+1     tree[root].sum = tree[root<<1].sum+tree[root<<1|1].sum;//区间和等于左右区间的和
}
//k表示需要更新的点,e表示需要更新的值
void Insert(int root, int k, int e)
{
    tree[root].sum += e;
    if(tree[root].L == tree[root].R)
        return ;     if(k <= tree[root].Mid())
        Insert(root<<1, k, e);
    else
        Insert(root<<1|1, k, e);
}
//查询区间LR的和
int Query(int root, int L, int R)
{
    if(tree[root].L == L && tree[root].R == R)
        return tree[root].sum;     //如果在左子树区间
    if(R <= tree[root].Mid())
        return Query(root<<1, L, R);
    else if(L > tree[root].Mid())//如果在右子树区间
        return Query(root<<1|1, L, R);
    else
    {//在左右子树
        int Lsum = Query(root<<1, L, tree[root].Mid());
        int Rsum = Query(root<<1|1, tree[root].Mid()+1, R);         return Lsum + Rsum;
    }
} int main()
{
    int T, t=1;     scanf("%d", &T);     while(T--)
    {
        int i, N, x, y;         scanf("%d", &N);         for(i=1; i<=N; i++)
            scanf("%d", &val[i]);
        Build(1, 1, N);         char s[10];         printf("Case %d:\n", t++);         while(scanf("%s", s), s[0] != 'E')
        {
            scanf("%d%d", &x, &y);             if(s[0] == 'A')
                Insert(1, x, y);
            else if(s[0] == 'S')
                Insert(1, x, -y);
            else
            {
                int ans = Query(1, x, y);
                printf("%d\n", ans);
            }
        }
    }     return 0;
}

A - 敌兵布阵 - hdu 1166的更多相关文章

  1. 敌兵布阵 HDU 1166 线段树

    敌兵布阵 HDU 1166 线段树 题意 这个题是用中文来描写的,很简单,没什么弯. 解题思路 这个题肯定就是用线段树来做了,不过当时想了一下可不可用差分来做,因为不熟练就还是用了线段树来做,几乎就是 ...

  2. A - 敌兵布阵 HDU - 1166 线段树(多点修改当单点修改)

    线段树板子题练手用 #include<cstdio> using namespace std; ; int a[maxn],n; struct Node{ int l,r; long lo ...

  3. 敌兵布阵 HDU - 1166 (树状数组模板题,线段树模板题)

    思路:就是树状数组的模板题,利用的就是单点更新和区间求和是树状数组的强项时间复杂度为m*log(n) 没想到自己以前把这道题当线段树的单点更新刷了. 树状数组: #include<iostrea ...

  4. 敌兵布阵 HDU - 1166 板子题

    #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> ...

  5. A - 敌兵布阵(HDU 1166)

    A - 敌兵布阵 HDU - 1166 思路:线段树单点修改+区间查询. #include<cstdio> #include<cstring> #include<iost ...

  6. HDU 1166 敌兵布阵 (树状数组)

    题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=1166 敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    ...

  7. HDU 1166 敌兵布阵(分块)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  8. hdu acm 1166 敌兵布阵 (线段树)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  9. HDU 1166 敌兵布阵

    B - 敌兵布阵 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

随机推荐

  1. POJ 2653 Pick-up sticks (判断线段相交)

    Pick-up sticks Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 10330   Accepted: 3833 D ...

  2. 5阻止A默认行为和JS实现页面跳转的方法

    <!--HTML中阻止A标签的默认行为: href="javascript:;" href="javascript:void 0;"--><! ...

  3. win7+SQL2008无法打开物理文件 操作系统错误 5:拒绝访问 SQL Sever

    今天在win7+SQL2008的环境下操作分离附加数据库,分离出去然后再附加,没有问题.但是一把.mdf文件拷到其它文件夹下就出错,错误如下:无法打开物理文件 "E:\db\MyDB.mdf ...

  4. 配置中的address不能重复

    <jaxws:endpoint  implementor="com.service.imp.UserServiceImpl" address="/user" ...

  5. 第10章 PHP异常处理

    1. 抛出一个异常 从PHP5开始,PHP支持异常处理,异常处理是面向对象一个重要特性,PHP代码中的异常通过throw抛出,异常抛出之后,后面的代码将不会再被执行. 既然抛出异常会中断程序执行,那么 ...

  6. 记一次npapi插件无窗口(windowless )化下的妙巧思路然后解决问题的超爽体验过程

     1:问题 集成第三方的ocx控件,用来做pdf显示和签名.如果用窗口化插件做,很简单,加载ocx到窗口中,再显示到网页即可.但这样有个缺点.就是这个窗口会浮动在网页元素的上面,导致遮挡住网页元素.比 ...

  7. Python网页爬虫(一)

    很多时候我们想要获得网站的数据,但是网站并没有提供相应的API调用,这时候应该怎么办呢?还有的时候我们需要模拟人的一些行为,例如点击网页上的按钮等,又有什么好的解决方法吗?这些正是python和网页爬 ...

  8. nodejs新手教程中upload file的问题

    可参见: http://cnodejs.org/topic/50234890f767cc9a51f88481 request.setEncoding("utf8");应注释掉.

  9. Hibernate的CRUD

    1.CRUD: C:sesion.save() R:session.get()? session.load() D:session.delete() U:session.update() 2.读取数据 ...

  10. InstallShield Basic MSI工程常见问题解答[转]

    1.  问题描述:采用何种安装模式?实现方法:如果对用户界面等自定义要求不高的话,建议用Basic Msi Project,否则用InstallScript MSI Project. 2.  问题描述 ...