【UVA 1151】 Buy or Build (有某些特别的东东的最小生成树)
【题意】
平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方。
另外还有q(0<=q<=8)个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相互连通,第i个套餐的花费为ci。
求最小花费。
Input
(1 ≤ n ≤ 1000) (0 ≤ q ≤ 8).The second integer is the the cost of the subnetwork
(not greater than 2 × 10^6). integer values (ranging from 0 to 3000)
Output...
Sample Input
1
7 3
2 4 1 2
3 3 3 6 7
3 9 2 4 5
0 2
4 0
2 0
4 2
1 3
0 5
4 4
Sample Output
17
【分析】
枚举套餐哦。其实生成树问题多一些东东的话都是枚举的吧?吗?
你一开始先排序好,枚举完就不用排序了。
LRJ说什么只考虑最小生成树上的边优化版本:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 1010
#define INF 0xfffffff int a[][Maxn],c[];
int nx[Maxn],ny[Maxn];
int n,q; struct node
{
int x,y,c;
}t[Maxn*Maxn];
int len,nl; void ins(int x,int y,int c)
{
t[++len].x=x;t[len].y=y;t[len].c=c;
} bool cmp(node x,node y) {return x.c<y.c;} int mymin(int x,int y) {return x<y?x:y;}
int mymax(int x,int y) {return x>y?x:y;} int fa[Maxn];
int ffa(int x)
{
if(fa[x]!=x) fa[x]=ffa(fa[x]);
return fa[x];
} void ffind()
{
int ans=INF;
for(int i=;i<(<<q);i++)
{
int now=;
for(int j=;j<=n;j++) fa[j]=j;
int ft=-;
for(int j=;j<=q;j++) if((<<j-)&i)
{
for(int k=;k<=a[j][];k++)
fa[ffa(a[j][k])]=ffa(a[j][]);
now+=c[j];
}
int cnt=;
for(int j=;j<=n;j++) if(ffa(j)==j) cnt++;
for(int j=;j<=nl;j++)
{
if(ffa(t[j].x)!=ffa(t[j].y))
{
fa[ffa(t[j].x)]=ffa(t[j].y);
now+=t[j].c;
cnt--;
}
if(cnt==) break;
}
ans=mymin(ans,now);
}
printf("%d\n",ans);
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&q);
for(int i=;i<=q;i++)
{
scanf("%d%d",&a[i][],&c[i]);
for(int j=;j<=a[i][];j++) scanf("%d",&a[i][j]);
}
for(int i=;i<=n;i++)
{
scanf("%d%d",&nx[i],&ny[i]);
}
len=;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
{
// double xx=(double)(nx[i]-nx[j]),yy=(double)(ny[i]-ny[j]);
int xx=nx[i]-nx[j],yy=ny[i]-ny[j];
ins(i,j,xx*xx+yy*yy);
}
sort(t+,t++len,cmp);
int cnt=;nl=;
for(int i=;i<=n;i++) fa[i]=i;
for(int i=;i<=len;i++)
{
if(ffa(t[i].x)!=ffa(t[i].y))
{
fa[ffa(t[i].x)]=ffa(t[i].y);
cnt++;
t[++nl]=t[i];
}
if(cnt==n-) break;
}
ffind();
if(T) printf("\n");
}
return ;
}
- -
其实我觉得不用也没什么??反正都排序选前面的,区别??
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 1010
#define INF 0xfffffff int a[][Maxn],c[];
int nx[Maxn],ny[Maxn];
int n,q; struct node
{
int x,y,c;
}t[Maxn*Maxn];
int len,nl; void ins(int x,int y,int c)
{
t[++len].x=x;t[len].y=y;t[len].c=c;
} bool cmp(node x,node y) {return x.c<y.c;} int mymin(int x,int y) {return x<y?x:y;}
int mymax(int x,int y) {return x>y?x:y;} int fa[Maxn];
int ffa(int x)
{
if(fa[x]!=x) fa[x]=ffa(fa[x]);
return fa[x];
} void ffind()
{
int ans=INF;
for(int i=;i<(<<q);i++)
{
int now=;
for(int j=;j<=n;j++) fa[j]=j;
int ft=-;
for(int j=;j<=q;j++) if((<<j-)&i)
{
for(int k=;k<=a[j][];k++)
fa[ffa(a[j][k])]=ffa(a[j][]);
now+=c[j];
}
int cnt=;
for(int j=;j<=n;j++) if(ffa(j)==j) cnt++;
for(int j=;j<=len;j++)
{
if(ffa(t[j].x)!=ffa(t[j].y))
{
fa[ffa(t[j].x)]=ffa(t[j].y);
now+=t[j].c;
cnt--;
}
if(cnt==) break;
}
ans=mymin(ans,now);
}
printf("%d\n",ans);
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&q);
for(int i=;i<=q;i++)
{
scanf("%d%d",&a[i][],&c[i]);
for(int j=;j<=a[i][];j++) scanf("%d",&a[i][j]);
}
for(int i=;i<=n;i++)
{
scanf("%d%d",&nx[i],&ny[i]);
}
len=;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
{
// double xx=(double)(nx[i]-nx[j]),yy=(double)(ny[i]-ny[j]);
int xx=nx[i]-nx[j],yy=ny[i]-ny[j];
ins(i,j,xx*xx+yy*yy);
}
sort(t+,t++len,cmp);
/*int cnt=0;nl=0;
for(int i=1;i<=n;i++) fa[i]=i;
for(int i=1;i<=len;i++)
{
if(ffa(t[i].x)!=ffa(t[i].y))
{
fa[ffa(t[i].x)]=ffa(t[i].y);
cnt++;
t[++nl]=t[i];
}
if(cnt==n-1) break;
}*/
ffind();
if(T) printf("\n");
}
return ;
}
像是没有区别= =
2016-11-01 22:24:10
【UVA 1151】 Buy or Build (有某些特别的东东的最小生成树)的更多相关文章
- UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)
题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...
- UVa 1151 - Buy or Build(最小生成树)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 1151 Buy or Build MST(最小生成树)
题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...
- UVA 1151 Buy or Build (最小生成树)
先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...
- uva 1151 - Buy or Build poj 2784 Buy or Build(最小生成树)
最小生成树算法简单 只是增加了一些新的东西,对于需要最小生成树算法 和中 并检查使用的一系列 还有一些更深入的了解. 方法的一些复杂问题 #include<cstdio> #include ...
- UVa 1151 Buy or Build (最小生成树+二进制法暴力求解)
题意:给定n个点,你的任务是让它们都连通.你可以新建一些边,费用等于两点距离的平方(当然越小越好),另外还有几种“套餐”,可以购买,你购买的话,那么有些边就可以连接起来, 每个“套餐”,也是要花费的, ...
- UVa 1151 Buy or Build【最小生成树】
题意:给出n个点的坐标,现在需要让这n个点连通,可以直接在点与点之间连边,花费为两点之间欧几里得距离的平方,也可以选购套餐,套餐中所含的点是相互连通的 问最少的花费 首先想kruskal算法中,被加入 ...
- UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)
题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...
- UVA 1151 买还是建(最小生成树)
买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...
- POJ(2784)Buy or Build
Buy or Build Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1369 Accepted: 542 Descr ...
随机推荐
- [Form Builder]NAME_IN()与COPY()
NAME_IN和COPY实际是间接引用,类似指针传递,而不是值传递... IF :VAR1 IS NULL ... direct referenceIF NAME_IN ( :VAR1 ) IS N ...
- centos6 install mplayer(multimedia)
step_1 http://wiki.centos.org/AdditionalResources/Repositories/RPMForge step_2 http://wiki.centos.or ...
- 关于sqlserver 2008 远程导入表数据
/*不同服务器数据库之间的数据操作*/ --创建链接服务器 exec sp_addlinkedserver 'ITSV ', ' ', 'SQLOLEDB ', '远程服务器名或ip地址 ' ex ...
- TCP调试助手
网络开发经常要用到一些TCP&UDP的调试工具,搜集一些备用. 目前总结工具有(不分先后): chrome等自带调试器调试HTTP Fiddler(.NET)和Charles debugger ...
- Java_LIST使用方法和四种遍历arrayList方法
1.List接口提供的适合于自身的常用方法均与索引有关,这是因为List集合为列表类型,以线性方式存储对象,可以通过对象的索引操作对象. List接口的常用实现类有ArrayList和Linked ...
- CSS3 transition-timing-function
CSS3 transition-timing-function 属性 定义和用法 transition-timing-function 属性规定过渡效果的速度曲线. 该属性允许过渡效果随着时间来改变其 ...
- IOS 本地通知
操作流程 1.接收通知 2.注册发送通知 用途:提示时间,闹钟 //接收本地通知(在Appdelegate里面实现) - (void)application:(UIApplication *)appl ...
- java新手笔记21 接口
1.接口 package com.yfs.javase; public interface IDemo1 {//interface 接口 public /*abstract*/ void method ...
- 配置iSCSI
先查下yum list | grep iscsi, 存在iscsi包, 进行安装:yum install iscsi-initiator-utils.x86_64, cat /etc/iscsi/in ...
- EOF是什么?
转自http://www.ruanyifeng.com/blog/2011/11/eof.html 学习C语言的时候,遇到的一个问题就是EOF. 它是end of file的缩写,表示"文字 ...