【题意】

  平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方。

另外还有q(0<=q<=8)个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相互连通,第i个套餐的花费为ci。

求最小花费。

Input
 (1 ≤ n ≤ 1000)  (0 ≤ q ≤ 8).

The second integer is the the cost of the subnetwork
(not greater than 2 × 10^6). integer values (ranging from 0 to 3000) 
Output

...

Sample Input
1
7 3
2 4 1 2
3 3 3 6 7
3 9 2 4 5
0 2
4 0
2 0
4 2
1 3
0 5
4 4
Sample Output
17

【分析】

  枚举套餐哦。其实生成树问题多一些东东的话都是枚举的吧?吗?
  你一开始先排序好,枚举完就不用排序了。

LRJ说什么只考虑最小生成树上的边优化版本:

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 1010
#define INF 0xfffffff int a[][Maxn],c[];
int nx[Maxn],ny[Maxn];
int n,q; struct node
{
int x,y,c;
}t[Maxn*Maxn];
int len,nl; void ins(int x,int y,int c)
{
t[++len].x=x;t[len].y=y;t[len].c=c;
} bool cmp(node x,node y) {return x.c<y.c;} int mymin(int x,int y) {return x<y?x:y;}
int mymax(int x,int y) {return x>y?x:y;} int fa[Maxn];
int ffa(int x)
{
if(fa[x]!=x) fa[x]=ffa(fa[x]);
return fa[x];
} void ffind()
{
int ans=INF;
for(int i=;i<(<<q);i++)
{
int now=;
for(int j=;j<=n;j++) fa[j]=j;
int ft=-;
for(int j=;j<=q;j++) if((<<j-)&i)
{
for(int k=;k<=a[j][];k++)
fa[ffa(a[j][k])]=ffa(a[j][]);
now+=c[j];
}
int cnt=;
for(int j=;j<=n;j++) if(ffa(j)==j) cnt++;
for(int j=;j<=nl;j++)
{
if(ffa(t[j].x)!=ffa(t[j].y))
{
fa[ffa(t[j].x)]=ffa(t[j].y);
now+=t[j].c;
cnt--;
}
if(cnt==) break;
}
ans=mymin(ans,now);
}
printf("%d\n",ans);
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&q);
for(int i=;i<=q;i++)
{
scanf("%d%d",&a[i][],&c[i]);
for(int j=;j<=a[i][];j++) scanf("%d",&a[i][j]);
}
for(int i=;i<=n;i++)
{
scanf("%d%d",&nx[i],&ny[i]);
}
len=;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
{
// double xx=(double)(nx[i]-nx[j]),yy=(double)(ny[i]-ny[j]);
int xx=nx[i]-nx[j],yy=ny[i]-ny[j];
ins(i,j,xx*xx+yy*yy);
}
sort(t+,t++len,cmp);
int cnt=;nl=;
for(int i=;i<=n;i++) fa[i]=i;
for(int i=;i<=len;i++)
{
if(ffa(t[i].x)!=ffa(t[i].y))
{
fa[ffa(t[i].x)]=ffa(t[i].y);
cnt++;
t[++nl]=t[i];
}
if(cnt==n-) break;
}
ffind();
if(T) printf("\n");
}
return ;
}

- -

其实我觉得不用也没什么??反正都排序选前面的,区别??

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 1010
#define INF 0xfffffff int a[][Maxn],c[];
int nx[Maxn],ny[Maxn];
int n,q; struct node
{
int x,y,c;
}t[Maxn*Maxn];
int len,nl; void ins(int x,int y,int c)
{
t[++len].x=x;t[len].y=y;t[len].c=c;
} bool cmp(node x,node y) {return x.c<y.c;} int mymin(int x,int y) {return x<y?x:y;}
int mymax(int x,int y) {return x>y?x:y;} int fa[Maxn];
int ffa(int x)
{
if(fa[x]!=x) fa[x]=ffa(fa[x]);
return fa[x];
} void ffind()
{
int ans=INF;
for(int i=;i<(<<q);i++)
{
int now=;
for(int j=;j<=n;j++) fa[j]=j;
int ft=-;
for(int j=;j<=q;j++) if((<<j-)&i)
{
for(int k=;k<=a[j][];k++)
fa[ffa(a[j][k])]=ffa(a[j][]);
now+=c[j];
}
int cnt=;
for(int j=;j<=n;j++) if(ffa(j)==j) cnt++;
for(int j=;j<=len;j++)
{
if(ffa(t[j].x)!=ffa(t[j].y))
{
fa[ffa(t[j].x)]=ffa(t[j].y);
now+=t[j].c;
cnt--;
}
if(cnt==) break;
}
ans=mymin(ans,now);
}
printf("%d\n",ans);
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&q);
for(int i=;i<=q;i++)
{
scanf("%d%d",&a[i][],&c[i]);
for(int j=;j<=a[i][];j++) scanf("%d",&a[i][j]);
}
for(int i=;i<=n;i++)
{
scanf("%d%d",&nx[i],&ny[i]);
}
len=;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
{
// double xx=(double)(nx[i]-nx[j]),yy=(double)(ny[i]-ny[j]);
int xx=nx[i]-nx[j],yy=ny[i]-ny[j];
ins(i,j,xx*xx+yy*yy);
}
sort(t+,t++len,cmp);
/*int cnt=0;nl=0;
for(int i=1;i<=n;i++) fa[i]=i;
for(int i=1;i<=len;i++)
{
if(ffa(t[i].x)!=ffa(t[i].y))
{
fa[ffa(t[i].x)]=ffa(t[i].y);
cnt++;
t[++nl]=t[i];
}
if(cnt==n-1) break;
}*/
ffind();
if(T) printf("\n");
}
return ;
}

像是没有区别= =

2016-11-01 22:24:10

【UVA 1151】 Buy or Build (有某些特别的东东的最小生成树)的更多相关文章

  1. UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)

    题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...

  2. UVa 1151 - Buy or Build(最小生成树)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVA 1151 Buy or Build MST(最小生成树)

    题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...

  4. UVA 1151 Buy or Build (最小生成树)

    先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...

  5. uva 1151 - Buy or Build poj 2784 Buy or Build(最小生成树)

    最小生成树算法简单 只是增加了一些新的东西,对于需要最小生成树算法 和中 并检查使用的一系列 还有一些更深入的了解. 方法的一些复杂问题 #include<cstdio> #include ...

  6. UVa 1151 Buy or Build (最小生成树+二进制法暴力求解)

    题意:给定n个点,你的任务是让它们都连通.你可以新建一些边,费用等于两点距离的平方(当然越小越好),另外还有几种“套餐”,可以购买,你购买的话,那么有些边就可以连接起来, 每个“套餐”,也是要花费的, ...

  7. UVa 1151 Buy or Build【最小生成树】

    题意:给出n个点的坐标,现在需要让这n个点连通,可以直接在点与点之间连边,花费为两点之间欧几里得距离的平方,也可以选购套餐,套餐中所含的点是相互连通的 问最少的花费 首先想kruskal算法中,被加入 ...

  8. UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)

    题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...

  9. UVA 1151 买还是建(最小生成树)

    买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...

  10. POJ(2784)Buy or Build

    Buy or Build Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1369   Accepted: 542 Descr ...

随机推荐

  1. c语言,strcpy

    #include <stdio.h> #include <string.h> int main() {  char string[10];  char *str="a ...

  2. TCP三次握手/四次握手

    TCP连接三次握手 首先Client端发送连接请求报文,Server段接受连接后回复ACK报文,并为这次连接分配资源.Client端接收到ACK报文后也向Server段发生ACK报文,并分配资源,这样 ...

  3. SqlServer 由于未在SqlServer的此实例上安装复制组件解决方法

    sqlserver2005在复制订阅时出现: “由于未在SqlServer的此实例上安装复制组件,Microsoft SQL server 无法访问这些组件,请参阅SQL Server……” 解决方法 ...

  4. redhat5.8无法进入图形界面

    解决办法: 删除/etc/X11/xorg.conf文件

  5. google模拟各种Android手机浏览器方法

    在开始--运行 输入 chrome.exe --user-agent="Mozilla/5.0 (Linux; U; Android 2.2; en-us; Nexus One Build/ ...

  6. C语言链表全操作(增,删,改,查,逆序,递增排序,递减排序,链式队列,链式栈)

    一,数据结构——链表全操作: 链表形式: 其中,每个节点(Node)是一个结构体,这个结构体包含数据域,指针域,数据域用来存放数据,指针域则用来指向下一个节点: 特别说明:对于单链表,每个节点(Nod ...

  7. Android中Matrix的pre post set方法理解(转载来源:Linux社区 作者:zjmdp)

    虽说以前学习过线性代数和图形学原理,但是在实际中碰到matrix还是疑惑了好一阵子,今天通过向同事请教终于找到一点门路,特总结如下: Matrix主要用于对平面进行缩放,平移,旋转以及倾斜操作,为简化 ...

  8. spring setter方法注入

    <bean id="dao" class="Dao"></bean> <bean id="service" c ...

  9. 深入了解absolute

    1.absolute与float的相同的特性表现  a.包裹性  b.破坏性:父元素没有设置高或宽,父元素的高或宽取决于这个元素的内容  c.不能同时存在 2.absolute独立使用,不与relat ...

  10. 提高C#编程水平不可不读的50个要诀

    提高C#编程水平的50个要点 1.总是用属性 (Property) 来代替可访问的数据成员 2.在 readonly 和 const 之间,优先使用 readonly 3.在 as 和 强制类型转换之 ...