1. 为什么平衡树?

在二叉搜索树(BST,Binary Search Tree)中提到,BST树可能会退化成一个链表(整棵树中只有左子树,或者只有右子树),这将大大影响二叉树的性能。

前苏联科学家G.M. Adelson-Velskii 和 E.M. Landis给出了答案。他们在1962年发表的一篇名为《An algorithm for the organization of information》的文章中提出了一种自平衡二叉查找树(self-balancing binary search tree)。这种二叉查找树在插入和删除操作中,可以通过一系列的旋转操作来保持平衡,从而保证了二叉查找树的查找效率。最终这种二叉查找树以他们的名字命名为“AVL-Tree”,它也被称为平衡二叉树(Balanced Binary Tree)。

2. 原理

在节点上设置一个平衡因子BF,代表左右子树的高度差,BF = { -1, 0, 1}。

3. 旋转

AVL的Insert/Delete操作可能会引起树的失衡,可以通过选择解决这个问题。

3.1 4种旋转

(1)LL

(2)RR

(3)LR

(4)RL

在下面的文章中有一个关于AVL选择的动画,大家不妨看看。

C#与数据结构--树论--平衡二叉树(AVL Tree)

3.2 旋转实现

在算法导论中给出旋转的伪代码:

LEFT-ROTATE(T, x)
1 y ← right[x] ▹ Set y.
2 right[x] ← left[y] ▹ Turn y's left subtree into x's right subtree.
3 p[left[y]] ← x
4 p[y] ← p[x] ▹ Link x's parent to y.
5 if p[x] = nil[T]
6 then root[T] ← y
7 else if x = left[p[x]]
8 then left[p[x]] ← y
9 else right[p[x]] ← y
10 left[y] ← x ▹ Put x on y's left.
11 p[x] ← y
//旋转以root为根的子树,当高度改变,则返回true;高度未变则返回false
private bool RotateSubTree(int bf)
{
bool tallChange = true;
Node root = path[p], newRoot = null;
if (bf == 2) //当平衡因子为2时需要进行旋转操作
{
int leftBF = root.Left.BF;
if (leftBF == -1) //LR型旋转
{
newRoot = LR(root);
}
else if (leftBF == 1)
{
newRoot = LL(root); //LL型旋转
}
else //当旋转根左孩子的bf为0时,只有删除时才会出现
{
newRoot = LL(root);
tallChange = false;
}
}
if (bf == -2) //当平衡因子为-2时需要进行旋转操作
{
int rightBF = root.Right.BF; //获取旋转根右孩子的平衡因子
if (rightBF == 1)
{
newRoot = RL(root); //RL型旋转
}
else if (rightBF == -1)
{
newRoot = RR(root); //RR型旋转
}
else //当旋转根左孩子的bf为0时,只有删除时才会出现
{
newRoot = RR(root);
tallChange = false;
}
}
//更改新的子树根
if (p > 0)
{
if (root.Data < path[p - 1].Data)
{
path[p - 1].Left = newRoot;
}
else
{
path[p - 1].Right = newRoot;
}
}
else
{
_head = newRoot; //如果旋转根为AVL树的根,则指定新AVL树根结点
}
return tallChange;
}
//root为旋转根,rootPrev为旋转根双亲结点
private Node LL(Node root) //LL型旋转,返回旋转后的新子树根
{
Node rootNext = root.Left;
root.Left = rootNext.Right;
rootNext.Right = root;
if (rootNext.BF == 1)
{
root.BF = 0;
rootNext.BF = 0;
}
else //rootNext.BF==0的情况,删除时用
{
root.BF = 1;
rootNext.BF = -1;
}
return rootNext; //rootNext为新子树的根
}
private Node LR(Node root) //LR型旋转,返回旋转后的新子树根
{
Node rootNext = root.Left;
Node newRoot = rootNext.Right;
root.Left = newRoot.Right;
rootNext.Right = newRoot.Left;
newRoot.Left = rootNext;
newRoot.Right = root;
switch (newRoot.BF) //改变平衡因子
{
case 0:
root.BF = 0;
rootNext.BF = 0;
break;
case 1:
root.BF = -1;
rootNext.BF = 0;
break;
case -1:
root.BF = 0;
rootNext.BF = 1;
break;
}
newRoot.BF = 0;
return newRoot; //newRoot为新子树的根
}
private Node RR(Node root) //RR型旋转,返回旋转后的新子树根
{
Node rootNext = root.Right;
root.Right = rootNext.Left;
rootNext.Left = root;
if (rootNext.BF == -1)
{
root.BF = 0;
rootNext.BF = 0;
}
else //rootNext.BF==0的情况,删除时用
{
root.BF = -1;
rootNext.BF = 1;
}
return rootNext; //rootNext为新子树的根
}
private Node RL(Node root) //RL型旋转,返回旋转后的新子树根
{
Node rootNext = root.Right;
Node newRoot = rootNext.Left;
root.Right = newRoot.Left;
rootNext.Left = newRoot.Right;
newRoot.Right = rootNext;
newRoot.Left = root;
switch (newRoot.BF) //改变平衡因子
{
case 0:
root.BF = 0;
rootNext.BF = 0;
break;
case 1:
root.BF = 0;
rootNext.BF = -1;
break;
case -1:
root.BF = 1;
rootNext.BF = 0;
break;
}
newRoot.BF = 0;
return newRoot; //newRoot为新子树的根
}

4. 插入与删除

4.1 插入

public bool Add(int value) //添加一个元素
{ //如果是空树,则新结点成为二叉排序树的根
if (_head == null)
{
_head = new Node(value);
_head.BF = 0;
return true;
}
p = 0;
//prev为上一次访问的结点,current为当前访问结点
Node prev = null, current = _head;
while (current != null)
{
path[p++] = current; //将路径上的结点插入数组
//如果插入值已存在,则插入失败
if (current.Data == value)
{
return false;
}
prev = current;
//当插入值小于当前结点,则继续访问左子树,否则访问右子树
current = (value < prev.Data) ? prev.Left : prev.Right;
}
current = new Node(value); //创建新结点
current.BF = 0;
if (value < prev.Data) //如果插入值小于双亲结点的值
{
prev.Left = current; //成为左孩子
}
else //如果插入值大于双亲结点的值
{
prev.Right = current; //成为右孩子
}
path[p] = current; //将新元素插入数组path的最后
//修改插入点至根结点路径上各结点的平衡因子
int bf = 0;
while (p > 0)
{ //bf表示平衡因子的改变量,当新结点插入左子树,则平衡因子+1
//当新结点插入右子树,则平衡因子-1
bf = (value < path[p - 1].Data) ? 1 : -1;
path[--p].BF += bf; //改变当父结点的平衡因子
bf = path[p].BF; //获取当前结点的平衡因子
//判断当前结点平衡因子,如果为0表示该子树已平衡,不需再回溯
//而改变祖先结点平衡因子,此时添加成功,直接返回
if (bf == 0)
{
return true;
}
else if (bf == 2 || bf == -2) //需要旋转的情况
{
RotateSubTree(bf);
return true;
}
}
return true;
}

4.2 删除

 private void RemoveNode(Node node)
{
Node tmp = null;
//当被删除结点存在左右子树时
if (node.Left != null && node.Right != null)
{
tmp = node.Left; //获取左子树
path[++p] = tmp;
while (tmp.Right != null) //获取node的中序遍历前驱结点,并存放于tmp中
{ //找到左子树中的最右下结点
tmp = tmp.Right;
path[++p] = tmp;
}
//用中序遍历前驱结点的值代替被删除结点的值
node.Data = tmp.Data;
if (path[p - 1] == node)
{
path[p - 1].Left = tmp.Left;
}
else
{
path[p - 1].Right = tmp.Left;
}
}
else //当只有左子树或右子树或为叶子结点时
{ //首先找到惟一的孩子结点
tmp = node.Left;
if (tmp == null) //如果只有右孩子或没孩子
{
tmp = node.Right;
}
if (p > 0)
{
if (path[p - 1].Left == node)
{ //如果被删结点是左孩子
path[p - 1].Left = tmp;
}
else
{ //如果被删结点是右孩子
path[p - 1].Right = tmp;
}
}
else //当删除的是根结点时
{
_head = tmp;
}
}
//删除完后进行旋转,现在p指向实际被删除的结点
int data = node.Data;
while (p > 0)
{ //bf表示平衡因子的改变量,当删除的是左子树中的结点时,平衡因子-1
//当删除的是右子树的孩子时,平衡因子+1
int bf = (data <= path[p - 1].Data) ? -1 : 1;
path[--p].BF += bf; //改变当父结点的平衡因子
bf = path[p].BF; //获取当前结点的平衡因子
if (bf != 0) //如果bf==0,表明高度降低,继续后上回溯
{
//如果bf为1或-1则说明高度未变,停止回溯,如果为2或-2,则进行旋转
//当旋转后高度不变,则停止回溯
if (bf == 1 || bf == -1 || !RotateSubTree(bf))
{
break;
}
}
}
}

平衡树(AVL)详解的更多相关文章

  1. 详解什么是平衡二叉树(AVL)(修订补充版)

    详解什么是平衡二叉树(AVL)(修订补充版) 前言 Wiki:在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树.查 ...

  2. 数据结构图文解析之:AVL树详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  3. AVL树详解

    AVL树 参考了:http://www.cppblog.com/cxiaojia/archive/2012/08/20/187776.html 修改了其中的错误,代码实现并亲自验证过. 平衡二叉树(B ...

  4. AVL树平衡旋转详解

    AVL树平衡旋转详解 概述 AVL树又叫做平衡二叉树.前言部分我也有说到,AVL树的前提是二叉排序树(BST或叫做二叉查找树).由于在生成BST树的过程中可能会出现线型树结构,比如插入的顺序是:1, ...

  5. Redis数据类型使用场景及有序集合SortedSet底层实现详解

    Redis常用数据类型有字符串String.字典dict.列表List.集合Set.有序集合SortedSet,本文将简单介绍各数据类型及其使用场景,并重点剖析有序集合SortedSet的实现. Li ...

  6. Java集合详解6:TreeMap和红黑树

    Java集合详解6:TreeMap和红黑树 初识TreeMap 之前的文章讲解了两种Map,分别是HashMap与LinkedHashMap,它们保证了以O(1)的时间复杂度进行增.删.改.查,从存储 ...

  7. 探索Redis设计与实现6:Redis内部数据结构详解——skiplist

    本文转自互联网 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial ...

  8. 【转】Redis内部数据结构详解 -- skiplist

    本文是<Redis内部数据结构详解>系列的第六篇.在本文中,我们围绕一个Redis的内部数据结构--skiplist展开讨论. Redis里面使用skiplist是为了实现sorted s ...

  9. 丰富图文详解B-树原理,从此面试再也不慌

    本文始发于个人公众号:TechFlow,原创不易,求个关注 本篇原计划在上周五发布,由于太过硬核所以才拖到了这周五.我相信大家应该能从标题当中体会到这个硬核. 周五的专题是大数据和分布式,我最初的打算 ...

  10. 数据结构图文解析之:队列详解与C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

随机推荐

  1. 设置linux服务器定时与时间服务器同步

    在一些大公司经常出现这样一个情况:公司或一些机关单位的内部业务系统的应用服务器以及数据都是做的多机集群部署而且基本都是linux系统,而且都是内部网,不与外网通讯的.这样经常就会出现一个情况,我发送任 ...

  2. spring-quartz普通任务与可传参任务

    两者区别与作用: 普通任务:总调度(SchedulerFactoryBean)--> 定时调度器(CronTriggerFactoryBean) --> 调度明细自定义执行方法bean(M ...

  3. 大规模字符串检索-压缩trie树

    本文使用压缩trie树实现字符串检索的功能.首先将字符串通过编码转化为二进制串,随后将二进制串插入到trie树中,在插入过程中同时实现压缩的功能. 字符编码采用Huffman,但最终测试发现不采用Hu ...

  4. 你好,C++(3)2.1 一个C++程序的自白

    第2部分 与C++第一次亲密接触 在浏览了C++“三分天下”的世界版图之后,便对C++有了基本的了解,算是一只脚跨入了C++世界的大门.那么,怎样将我们的另外一只脚也跨入C++世界的大门呢?是该即刻开 ...

  5. Codeforces 543C Remembering Strings(DP)

    题意比较麻烦 见题目链接 Solution: 非常值得注意的一点是题目给出的范围只有20,而众所周知字母表里有26个字母.于是显然对一个字母进行变换后是不影响到其它字符串的. 20的范围恰好又是常见状 ...

  6. iOS 视频播放横屏,隐藏状态栏

    MPMoviePlayerViewController *moviePlayerViewController = [[MPMoviePlayerViewController alloc] init]; ...

  7. js submit的問題

    form 里面有input name="submit"的时候 $('#seachform').submit();不起作用

  8. Bootstrap_表单_图像

    在Bootstrap框架中对于图像的样式风格提供以下几种风格: 1.img-responsive:响应式图片,主要针对于响应式设计2.img-rounded:圆角图片3.img-circle:圆形图片 ...

  9. js手机站跳转

    var yunzhuanhua_pc_domain = "http://www.域名.com#yht"; //PC站网址var yunzhuanhua_wap_domain = & ...

  10. 关于本地计算机无法启动Apache2

    最近因工作需要,要学习PHP的基础编程,于是学习架设PHP工作环境. 但按照教材上介绍的那样,安装了WMAP后,一直无法运行成功.后发现Apache一直都不在运行状态.到WMAP中的Apache选项中 ...