自然数e这家伙怎么蹦跶出来的?
自然数e这家伙怎么蹦跶出来的?
之前看过一篇中文介绍自然数e的blog,引起了我的兴趣
原文是阮一峰大牛(我认为必须很有必要尊敬的称,大牛)嚼烂了吐出来的哈哈,只是我认为还是自己去看原文比較好
感觉非常总要的还是原文。“读后感”这样的东西还是有点别扭
以下是link,直接戳就是了。
文章的作者有视频的,某个比較特殊的站点,想办法找到吧。我认为还是不方便说。
。呵呵。。
。。我怕查水表。
我是好人
An Intuitive Guide To Exponential Functions & e
接下来,写我的“读后感”。
这年头,太多的家伙涉及e——这个非常特殊又常见的自然数。
欧拉公式,傅立叶变换,laplace变换,某些特殊的表达式求极限etc
然后,这个数怎么来的呢?
为什么会特殊把这个数标记为e呢?
一句话。这家伙怎么来的?
先说说 π 3.14。。。这家伙是圆的周长和直径的比值,对于不论什么圆形都适用。
我们于是定义了pi这个数。用π这个符号来作为标记。
Pi is the ratio between circumference and diameter shared by all circles
那么e呢?e也是一个标记。
e is the base rate of growth shared by all continually growing processes.
e是最基础的增长速率,适用于全部的连续增长模型。
So e is not an obscure, seemingly random number.e represents the idea that all continually growing systems are scaled versions of a common rate.
e这个数也并不晦涩。
它表示一个想法,全部的增长系统都能够用这个e来刻画(。。
。假设没看懂就跳过,回过头看这句话就会明确的)
连续的系统一開始理解可能有困难。我们採用先离散化。然后无穷逼近连续的思想来分析e的来源。
例如说随着时间倍增增长模型(2^n)
0时刻初始元素个数仅仅有1个。时刻1的时候,经过倍增,变成2,同理,时刻2变成4,时刻3变成8
figure 1
当前时刻的元素总个数 = 2^n (1)
把上面的公式稍稍变形一下
当前时刻的元素总个数 = (1+100%)^n (2)
事实上就相当于当前的增长率是100%,注意这里增长率这个概念。100%的增长率,n是增长的周期次数
我们再看另外一个问题,
money的增长问题
假如你有一块钱放在银行里面,增长率是100%(世界上没有银行这么蠢100%。。。呵呵。。
只关注问题的解释就好。
。。)
你得到的钱 = 本金*(1+100%)^n
一開始你有1块钱,于是1*(1+100%)^0 = 1,你没放银行里面去的时候,1块没变多。当你存入这家银行,而且经过了1年之后,1*(1+100%)^1 =2, 哇塞。变2元了!
figure 2
你的钱貌似在银行里在这一年内就像是线性增长一样
换句话说。在这一年里,你的钱= 1+1* [ (时间)/12个月] 是这样增长的,第一个月是1+1*1/12 ,第二个月是1+1*2/12 ,第六个月是1+1*6/12 == 1 + 0.5 == 1.5
第12个月是1+1*12/12 == 1+1 == 2
figure 3
但试想一下 。“钱是能够赚钱的”, 假设你在第六个月的时候能够获得1.5元,那么多出来的0.5元也是能帮你挣钱的!
你的挣钱
第7个月就应该是 1+1*(7/12) + 0.5*[(7-6)/12]
第12个月就应该是 1+1*(12/12)+0.5*(12-6)/12 == 1+1+0.25 !!!
figure 4
这就相当于
你的钱 = 本金*(1+50%)*(1+50%) = 1*(1+50%)*(1+50%) = 1*(1+100% / 2)^2
细心的人总认为有点奇怪,这里为什么就是50%呢?这里事实上是离散对于连续的一次逼近。
难道6月之前就不会有多出来的钱能够挣钱?这里不过选取的6月这个比較特殊的点而已。它是等分这一年的。
例如说我选取4月(这样更加逼近1月份,而且不是等分一年)
依照线性增长的,四月能够得到的钱 = 1+1*(4/12)
于是12月能够得到的钱 = 1+ 1*(12/12)+1*(4/12)*[(12-4)]/12
这样你就意识到,咦,之前的钱也是能够挣钱的!
等分有一个非常好的性质,就是这里的增长率和增长次数是有关系的
你拿到的钱 = 本金*(1+100%/等分的次数n)^n
能够非常好的把等分的次数。增长的次数,以及增长率联系起来!
(1+1/n)^n
是时候把时间段分的更加细了!
这里採用了3等分的方式
于是有(1+1/3)^3
有意思了,这样 1+一个大于0 的数,然后用幂函数作用.得到的结果是随着n增大!
n (1 + 1/n)^n
------------------
1 2
2 2.25
3 2.37
5 2.488
10 2.5937
100 2.7048
1,000 2.7169
10,000 2.71814
100,000 2.718268
1,000,000 2.7182804
更有意思了。随着n的增大 (1+1/n)^n,可是增大到2.7182左右的时候。随着n继续增大,(1+1/n)^n都不再有明显的增长
这里我们发现了一个非常“奇妙”的现象
当由离散趋向于连续的过程中(n越来越大,等分的程度越来越高。越来越逼近连续)
能够发现,对于连续增长模型。它的增长极限是一个常数,于是。我们找到了这个数。于是找个符号标记这家伙!
它就是e!。。
In geeky math terms,
e is defined to be that rate of growth if we continually compound 100%
return on smaller and smaller time periods
But what does it all mean?
The number e (2.718…) is the maximum possible result when compounding 100% growth for one time period. Sure, you started out expecting to grow from 1 to 2 (that’s a 100% increase, right?). But with each
tiny step forward you create a little dividend that starts growing on its own. When all is said and done, you end up with e (2.718…) at the end of 1 time period, not 2. e is the maximum, what happens when we compound 100% as much as possible.
e是当100%增长率的单位周期增长模型是连续增长的时候。最大的可能增长结果。由1增长到2,这里是离散的100%增长。
可是你把时间划分的更加细,由离散逼近于连续的时候,你将会发现。增长结果不会是无穷大或者某个不确定的值,而是一个确定的值,2.718....这就是e,e是当100%增长率的单位周期增长模型是连续增长的时候,最大的可能增长结果。
So, if we start with $1.00 and compound continuously at 100% return we get 1e. If we start with $2.00, we get 2e. If we start with $11.79, we get 11.79e.
1块钱在100%增长率的银行里面也不会经过一年就会得到无穷money。。。
e is like a speed limit (like c, the speed of light) saying how fast you can possibly grow using a continuous process. You might not always reach the speed limit, but it’s a reference point: you can write every rate
of growth in terms of this universal constant.
e就像是一个极限速度,就像光速c一样!e表明对于连续增长模型中。最大的可能输出
上帝啊。这个发现和測出光速一样伟大。
这个常数有啥用? 这个常数是一个极限,光速是c,100m/s 能够表示为 [100/(3*10^8)] *c ! 这里[100/(3*10^8)]是一个常数。
那么能够说明一个问题。随意的速度都能够用c来表示。对于增长速率呢?相同的,全部增长速率带来的输出都能够用这个e乘以一个独一无二的常数表示。
(Aside: Be careful about separating theincrease from the finalresult. 1 becoming e (2.718…) is anincrease (growth rate) of 171.8%. e, by itself, is the finalresult
you observe after all growth is taken into account (original + increase)).
对于不同的增长率(不同于100%)都能够用e来表示!
之前我们是(1+100%/n)^n的模型
假设不是100%呢?
例如说50%(随便一个增长率即可)
(1+50% / n)^n == (1+100%/2*n)^n == sqrt((1+100%/2n)^2n)
对于随意增长率 x > 1 == 1/x <1
(1+(1/x) /n)^n == (1+(1/xn))^n == {(1+(1/xn))^xn 开x次方}
不同的增长率都能够用e来表示
如何来刻画不同增长速率带来的增长结果(e^x)呢?
假设增长率是50%, 我们须要把e ^1变换成 e^0.5
这里是一个周期的增长结果
假设把50%增长率由一个周期作用到4个周期呢?
这是一个周期的(1+1/2n)^n
四个周期的话就是连续增长4周期。于是 [ (1+1/2n)^n ] ^4 == (1+(1/2n)^4n) == (1+(1/2n)^2n)^2 == e^2 == (e^0.5)^4
x意味着两件事情:
第一和增长率有关系
第二和增长周期次数有关系
有。e^x == e^(增长率*增长周期次数) [ 比如,(e^0.5)^4]
the variable x is a combination of rate and time.
x = rate * time
So, our general formula becomes:
growth = e^x = e^(r*t)
If we have a return of r for
t time periods, our net compound growth is e^rt. This even works for negative and fractional returns, by the way.
简直是爽啊!
迷迷糊糊和e打交道这么久,今天才彻底明确e的特性
自然数e这家伙怎么蹦跶出来的?的更多相关文章
- HDU2586How far away ?
http://acm.hdu.edu.cn/showproblem.php?pid=2586 How far away ? Time Limit: 2000/1000 MS (Java/Others) ...
- x.2
某些原因,和女朋友分手了,难过 订的M18XR3居然提前了半个多月到货,开心 想想一个人的孤单,还是有点难过 转眼间人生已经过去小半,剩下的除去苟延残喘20年,也就不到20年时间蹦跶.都说人生如戏,既 ...
- spring.net (3)依赖注入基础
属性的注入: 在上篇例子中已经出现并解释过: <object id="dog" type="SpringDemo.Dog,SpringDemo" sing ...
- Sql Server之旅——第七站 为什么都说状态少的字段不能建索引
我们在学sqlserver的时候,大多教科书和前辈们都说状态少的字段不要建索引,由此带来的开销还不如不建索引,但是这句话有多少人真的知道, 或者说有多少人真的对此有比较深刻的理解,而不是听别人道听途说 ...
- 日暮·第一章·决斗
日暮 第一章 决斗 泉州府,位于帝国的东南沿海,在数百年前,这里已是帝国最大的通商口岸之一,其一城之繁荣喧哗足以与异邦小国的都城相媲美,无数的人曾经来到这里,追逐财富,梦想,女人以及所有他们认为可 ...
- CSS控制背景
一.设置背景颜色:background-color 十六进制 background-color:#ff0000; 英文名称 background-color:red; 三原色 background-c ...
- Udacity调试课笔记之断言异常
Udacity调试课笔记之断言异常 这一单元的内容不是很多,如Zeller教授所说,就是如何写.检查断言,并如何使用工具实现自动推导出断言的条件. 现在,多数的编程语言,尤其是高级编程语言都会有内置的 ...
- css基础和心得(三)
OK!接下来我们分别说这些元素的意义.首先,什么是块级元素?在html中<div>,<p>,<h1>,<form>,<ul>和<li& ...
- 心路历程:当win10遇上win7激活程序...请默哀
经历一次莫名其妙的懵逼系统崩溃后,我对破解软件/激活软件终于有了阴影,想想就想哭,不过怨不了别人,锅不能随便甩,怪自己粗心大意,怪自己太懒呜呜呜... 所以有心将这次心路历程记录下来,谨防自己下次再犯 ...
随机推荐
- Android onConfigurationChanged(Configuration cfg) 无法触发问题
1.android:configChanges="orientation|keyboardHidden"的使用 当在activity加上android:configChange ...
- c-函数指针(求奇数偶数的和)
#include <stdio.h> /* 编写一个函数,输入 n 为偶数时,调用函数求 1/2+1/4+...+1/n,当输入 n 为奇数时,调用函数1/1+1/3+...+1/n(利用 ...
- 017_bcp_bulk_openrowset
017_bcp_bulk_openrowset --bcp*********************************************************************** ...
- 用XMPP实现完整Android聊天项目
简介 这是一个完整的xmpp的Android的项目服务端使用openfire3.9.3客户端使用Android4.2.2 集成第三方:百度地图sdkasmack.jaruniversal-image- ...
- 了解HTML的代码注释
什么是代码注释?代码注释的作用是帮助程序员标注代码的用途,过一段时间后再看你所编写的代码,就能很快想起这段代码的用途. 代码注释不仅方便程序员自己回忆起以前代码的用途,还可以帮助其他程序员很快的读懂你 ...
- Smarty环境配置
Smaty优点:1.代码分离 2.缓存技术 使用步骤: 1.下载Smaty模板 2.将模板中那个lib文件夹复制到项目中(一般为根目录,并且重命名在此命名为Smarty), 3.配置PHP 1.新建一 ...
- Android热更新开源项目Tinker集成实践总结
前言 最近项目集成了Tinker,开始认为集成会比较简单,但是在实际操作的过程中还是遇到了一些问题,本文就会介绍在集成过程大家基本会遇到的主要问题. 考虑一:后台的选取 目前后台功能可以通过三种方式实 ...
- 【USACO 1.2.2】方块转换
[问题描述] 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案.写一个程序来找出将原始图案按照以下列转换方法转换成新图案的最小方式: 1:转90度:图案按顺 ...
- javascript知识图谱
- html页面button样式
在过去的Web开发中,通常使用Photoshop来设计按钮的样式.不过随着CSS3技术的发展,你完全可以通过几行代码来定制一个漂亮的按钮,并且还可以呈现渐变.框阴影.文字阴影等效果.此类按钮最大的优势 ...