GCD Again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2611    Accepted Submission(s): 1090

Problem Description
Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?

No?

Oh, you must do this when you want to become a "Big Cattle".

Now you will find that this problem is so familiar:

The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little
more difficult problem:

Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.

This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.

Good Luck!

 
Input
Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
 
Output
For each integers N you should output the number of integers M in one line, and with one line of output for each line in input.
 
Sample Input
2
4
0
 
Sample Output
0
1
 
 
知识储备:
 
一.互质的概念:

1、定义

    互质(relatively primeì)又叫互素。若N个整数的最大公因数是1,则称这N个整数互质。

  比如8,10的最大公因数是2,不是1,因此不是整数互质。

  7,10,13的最大公因数是1,因此这是整数互质。

  5和5不互质,由于5和5的公因数有1、5。

  1和不论什么数都成倍数关系,但和不论什么数都互质。由于1的因数仅仅有1,而互质数的原则是:仅仅要两数的公因数仅仅有1时。就说两数是互质数。1仅仅有一个因数(所以1既不是质数(素数),也不是合数),无法再找到1和其它数的别的公因数了。所以1和不论什么数都互质(除0外)。

  互质数的写法:如c与m互质,则写作(c,m)=1。

  小学数学教材对互质数是这样定义的:“公约数仅仅有1的两个数。叫做互质数。”

  这里所说的“两个数”是指自然数。

  “公约数仅仅有 1”,不能误说成“没有公约数。

二.欧拉函数:

1.定义:

 对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。比如euler(8)=4,由于1,3,5,7均和8互质。

2.说明:

Euler函数表达通式:euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),当中p1,p2……pn为x的全部素因数。x是不为0的整数。

(注意:每种质因数仅仅一个。比方 12 = 2*2*3 那么      φ(12) = 12 * (1-1/2) * (1-1/3)=4  )

euler(1)=1(唯一和1互质的数(小于等于)就是1本身)。

欧拉函数性质:  1、  φ(mn) = φ(m) φ(n)

2、若n为奇数。φ(2n) = φ(n)。

欧拉公式的延伸:一个数的全部质因子之和是euler(n)*n/2。

注意:在欧拉函数中,函数值是 [ 1 , n ] 中与 n  互质数个数

题意:
求小于n的gcd(i,n)大于1的个数 
思路 : 欧拉函数直接求gcd(i,n)==1的个数  用n减就可以,注意小于n,故再减去1.
 
详细代码例如以下:
 
#include<stdio.h>

int euler(int n)//欧拉函数
{
int res=n,i;
for(i=2;i*i<=n;i++)
{
if(n%i==0)
res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出
while(n%i==0)
n/=i;//保证n一定是素数
}
if(n>1)
res=res/n*(n-1);
return res;
} int main()
{
int n;
while(scanf("%d",&n)&&n!=0)
printf("%d\n",n-euler(n)-1);//题目要求小于n,故还要减去1
return 0;
}

HDOJ 1787 GCD Again(欧拉函数)的更多相关文章

  1. HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  2. hdu 1787 GCD Again (欧拉函数)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  4. uva11426 gcd、欧拉函数

    题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...

  5. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  7. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  8. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  9. GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...

  10. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

随机推荐

  1. IO流基础

    IO流,也称为数据流,用于处理设备之间的数据传输. JAVA对数据的操作就是通过流的方式,而流分为两种:字符流,字节流 字符流: 可以内部制定码表,处理文字很方便,字符流里的基类是Reader,Wri ...

  2. 优秀Android开源项目

    开源项目汇总: Trinea/android-open-project · GitHub 包含个性化控件.工具库.优秀项目.开发及测试工具等 优秀完整项目: 1.Google I/O Android ...

  3. Mac开机黑屏解决办法

    开机黑屏问题 *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !import ...

  4. 算法系列之图--DFS

    深度优先搜索使用的策略是,只要与可能就在图中尽量“深入”.DFS总是对最近才发现的结点v出发边进行探索,知道该结点的所有出发边都被发现为止.一旦v的所有出发边都被发现了,搜索就回溯到v的前驱结点(v是 ...

  5. 翻译-让ng的$http服务与jQuerr.ajax()一样易用

    Make AngularJS $http service behave like jQuery.ajax() 让ng的$http服务与jQuerr.ajax()一样易用 作者zeke There is ...

  6. Java常量和变量

    1.Java运行原理 编译+解释型语言: 程序代码经编译后转换为一种称为java字节码(.class文件)的中间语言 file.java--->Class.class java虚拟机JVM将字节 ...

  7. Android SlidingMenu开源库及其使用

    极客学院教程: http://www.jikexueyuan.com/course/61_5.html?ss=1 1. SlidingMenu开源库的配置 2. SlidingMenu 的使用 --- ...

  8. 2014/09/30 Learning Note

    Vbird Linux: Vim Learning: http://linux.vbird.org/linux_basic/0310vi.php Bash Shell: http://linux.vb ...

  9. program_options禁止命令行短参数

    典型的 boost program_options的用法如下: #include <boost/program_options.hpp> using namespace boost::pr ...

  10. C语言连接MySql数据库

    C语言连接MySql数据库(CodeBlocks) 操作系统:Windows7(32位)编译软件:Code::Blocks 10.05数 据 库:mysql-5.1.62-win32 数据库内的数据: ...