SIFT算法:KeyPoint找寻、定位与优化
SIFT算法:DoG尺度空间生产 |
SIFT算法:KeyPoint找寻、定位与优化 |
SIFT算法:确定特征点方向 |
SIFT算法:特征描述子 |
目录:
1、找寻
2、定位
3、优化
1 KeyPoint找寻
极值的检测是在DoG空间进行的,检测是以前点为中心,3pixel*3pixel*3pixel的立方体为邻域,判断当前点是否为局部最大或最小。如下图所示,橘黄色为当前检测点,绿色点为其邻域。因为要比较当前点的上下层图像,所以极值检测从DoG每层的第2幅图像开始,终止于每层的倒数第2幅图像(第1幅没有下层,最后1幅没有上层,无法比较)。
2 KeyPoint定位
以上极值点的搜索时在离散空间中进行的,检测到的极值点并不是真正意义上的极值点。如下图所示,连续空间中极值与离散空间的区别。通常通过插值的方式,利用离散的值来插值,求取接近真正的极值的点。
对于一维函数,利用泰勒级数,将其展开为二次函数:
f(x) ≈ f(0) + f'(0)x + f''(0)x2
对于二维函数,泰勒展开为:
矩阵表示为:
矢量表示为:
当矢量为n维时,有:
求取f(x)的极值,只需求取∂f/∂x = 0。对于极值,x,y,σ三个变量,即为三维空间。利用三维子像元插值,设其函数为D(x, y, σ),令x = (x, y, σ)T,那么在第一节中找到的极值点进行泰勒展开为(式-1)如下:
其中D为极值点的值,∂DT/∂x为在极值点各自变量的倒数,∂2D/∂x2为其在展开点相应的矩阵。对上式求导,另∂D(x)/∂x = 0,结果如下式,对应的(为了表示方便,ˆx代替
)向量即为真正极值点偏离插值点的量。求解得(式-2)如下:
最终极值点的位置即为插值点x+ˆx,且多次迭代可以提高精度(一般为5次迭代)。
问题 1:
《图像局部不变性特征与描述》中提到,对于偏移量ˆx任何方向上偏移大于0.5的特征点,要删除该点。
对于Lowe的原文为:If the offset ˆx is larger than 0.5 in any dimension, then it means that the extremum lies closer to a different sample point. In this case, the sample point is changed and the interpolation performed instead about that point.
本人英语水平有限,个人认为原作者并未说要删除此类点,只是说这个点偏移了,所以需要插值来进行替换。且在OpenCV sift的源码中,并未删除上述类型的点,在vlfeat的开源代码中,也未删除上述点。
3 KeyPoint优化
对KeyPoint定位后,要剔除一些不好的KeyPoint,那什么是不好的KeyPoint的呢?
- DoG响应较低的点,即极值较小的点。
- 响应较强的点也不是稳定的特征点。DoG对图像中的边缘有较强的响应值,所以落在图像边缘的点也不是稳定的特征点。一方面图像边缘上的点是很难定位的,具有定位的歧义性;另一方面这样的点很容易受到噪声的干扰变得不稳定。
对于第一种,只需计算矫正后的点的响应值D(ˆx),响应值小于一定阈值,即认为该点效应较小,将其剔除。将(式-2)带入(式-1),求解得:
在Lowe文章中,将|D(ˆx)|<0.03(图像灰度归一化为[0,1])的特征点剔除。
对于第二种,利用Hessian矩阵来剔除。一个平坦的DoG响应峰值在横跨边缘的地方有较大的主曲率,而在垂直边缘的地方有较小的主曲率。主曲率可以通过2×2的Hessian矩阵H求出:







参考资料:
- David G. Lowe Distinctive Image Features from Scale-Invariant Keypoints
- 王永明 王贵锦 《图像局部不变性特征与描述》
SIFT算法:KeyPoint找寻、定位与优化的更多相关文章
- SIFT算法原理(2)-极值点的精确定位
在SIFT解析(一)建立高斯金字塔中,我们得到了高斯差分金字塔: 检测DOG尺度空间极值点 SIFT关键点是由DOG空间的局部极值点组成的.以中心点进行3X3X3的相邻点比较,检测其是否是图像域和尺度 ...
- SIFT算法:特征描述子
SIFT算法:DoG尺度空间生产 SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向 SIFT算法:特征描述子 目录: 1.确定描述子采样区域 2.生成描述子 2.1 旋 ...
- SIFT算法:确定特征点方向
SIFT算法:DoG尺度空间生产 SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向 SIFT算法:特征描述子 目录: 1.计算邻域梯度方向和幅值 2.计算梯度方向直方图 ...
- SIFT算法:DoG尺度空间生产
SIFT算法:DoG尺度空间生产 SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向 SIFT算法:特征描述子 目录: 1.高斯尺度空间(GSS - Gauss Scal ...
- SIFT算法详解(转)
http://blog.csdn.net/zddblog/article/details/7521424 目录(?)[-] 尺度不变特征变换匹配算法详解 Scale Invariant Feature ...
- 【转】 SIFT算法详解
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd zddmail@gmail.com 对于初学者,从Davi ...
- 《sift算法详解》阅读笔记
原博客来自:http://blog.csdn.net/zddblog/article/details/7521424 定义: 尺度不变特征转化是一种计算机视觉算法,用于侦测和描述物体的局部性特征,在空 ...
- SIFT算法详解
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd zddmail@gmail.com or (zddhub@ ...
- 转:sift算法详解
转自:http://blog.csdn.net/pi9nc/article/details/23302075 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 1.SIF ...
随机推荐
- 周末充电之WPF(四).多窗口之间操作
多窗口实例: 1.在多个窗口的情况下如何自定义指定要启动的窗口程序 <Application x:Class="toolbar.App" xmlns="http:/ ...
- html-----016---HTTP 状态消息
HTTP 状态消息 当浏览器从 web 服务器请求服务时,可能会发生错误. 从而有可能会返回下面的一系列状态消息: 1xx: 信息 消息: 描述: 100 Continue 服务器仅接收到部分请求,但 ...
- 一些简单的帮助类(1)-- String的类型验证
在工作中经常会遇到 验证String 中的值是否属于Int型或者是Bool又或是Date 一般的做法是用方法 类型.TryParse(string,类型) 来做验证. "; int intV ...
- linux命令之端口占用
1.lsof命令 eg: lsof -i:8080,这里显示8080端口在被java使用,状态是LISTEN, 可以使用killall 进程名(killall java) 结束占用端口的进程(不建议, ...
- Java实战之01Struts2-01简介及环境搭建
一.Struts2简介 1.Struts2概述 Struts2是Apache发行的MVC开源框架.注意:它只是表现层(MVC)框架. 2.Struts2的来历 Struts1:也是apache开发的一 ...
- sublime_2014-11-19
http://xionggang163.blog.163.com/blog/static/376538322013930104310297/ 直接输入注册码就可以了 ----- BEGIN LICEN ...
- ZOJ 1013 Great Equipment(DP)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=13 题目大意:说的是有三种不同的装备,分别是头盔,盔甲,战靴需要运输, ...
- ubuntu 13.10自定义启动顺序
添加PPA sudo add-apt-repository ppa:danielrichter2007/grub-customizer sudo apt-get update sudo apt-get ...
- datatable 行列转换
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- REST接口规范
参考文章 这篇文章使用不同的method代表不同操作 http://www.cnblogs.com/tommyli/p/3913018.html 实际应用中(我们过去的应用) 则是直接使用url来代表 ...