1. 背景介绍

L1 L2 cache是单核独享,L3是多核共享。如果多线程访问共享一维数组的连续元素,先读入第一个线程的L1 缓存中,其他线程访问缓存不命中需要加载,并且数据的更改后,标记为脏数据,其他线程访问cacheline中相邻地址需要先写回内存,再读入目标L1 cache,效率低。使用三份代码,测试多线程计算效率。

2. 测试:定积分划分矩形求π,迭代次数越高精度越高。定积分如下:

∫ 0 1 4 1 + x 2 d x

2.1一维数组测试代码:

// 目标:openmp 定积分划分矩形求π,多线程交替计算,使用一维数组sumH,
// 缺点:多线程会读写数组,缓存不一致,性能下降 #include <stdio.h>
#include <omp.h>
#include <string.h>
#include <sys/time.h> #define NT 16 //线程数量
#define N 50000000 //划分区间个数 void main()
{
struct timeval start,end;
float time;
double pi=0;
double sumH[NT]; //存储各个线程矩形的高之和
memset(sumH,0,sizeof(double)*NT);
double step = 1.0/(double)(N); //划分区间的宽度
// 设置线程数量,根据线程id交替计算矩形长度之和
omp_set_num_threads(NT);
gettimeofday(&start,NULL); //开始时间
#pragma omp parallel
{
double x=0; //x 坐标
int tid = omp_get_thread_num(); //线程id
int nts = omp_get_num_threads();//获取线程总数
for(int i=tid;i<N;i+=nts)
{
x = (i+0.5)*step; //取划分矩形的中点函数值
sumH[tid] += 4.0/(1+x*x);
}
}
for(int i=0;i<NT;i++)
pi += sumH[i];
pi = step * pi;
gettimeofday(&end,NULL);
time = end.tv_sec-start.tv_sec+(end.tv_usec-start.tv_usec)/1e6;
printf("ths %d useSec %f pi %18.15f\n",NT,time,pi);
return;
}

2.2二维数组测试代码:查询 L1cache line 大小。将数组变为二维数组,每个cache line对应一个元素并0填充,每个线程访问一个 cache line。

// 目标:openmp 定积分划分矩形求π,多线程交替计算,使用一维数组sumH,
// 使用二维数组填充cacheline #include <stdio.h>
#include <omp.h>
#include <string.h>
#include <sys/time.h> #define NT 16 //线程数量
#define N 50000000 //划分区间个数 void main()
{
struct timeval start,end;
float time;
double pi=0;
double sumH[NT][8]; //存储各个线程矩形的高之和,使用二维数组每行存储到一个cacheline
memset(sumH,0,sizeof(double)*NT*8);
double step = 1.0/(double)(N); //划分区间的宽度
// 设置线程数量,根据线程id交替计算矩形长度之和
omp_set_num_threads(NT);
gettimeofday(&start,NULL); //开始时间
#pragma omp parallel
{
double x=0; //x 坐标
int tid = omp_get_thread_num(); //线程id
int nts = omp_get_num_threads();//获取线程总数
for(int i=tid;i<N;i+=nts)
{
x = (i+0.5)*step; //取划分矩形的中点函数值
sumH[tid][0] += 4.0/(1+x*x);
}
}
for(int i=0;i<NT;i++)
pi += sumH[i][0];
pi = step * pi;
gettimeofday(&end,NULL);
time = end.tv_sec-start.tv_sec+(end.tv_usec-start.tv_usec)/1e6;
printf("ths %d useSec %f pi %18.15f\n",NT,time,pi);
return;
}

2.3使用私有变量:多线程使用局部变量,最后再赋值给共享数组的元素,减少每个线程对共享变量数组的访问次数。

// 目标:openmp 定积分划分矩形求π,多线程交替计算,使用一维数组sumH,
// 使用局部变量 #include <stdio.h>
#include <omp.h>
#include <string.h>
#include <sys/time.h> #define NT 16 //线程数量
#define N 50000000 //划分区间个数 void main()
{
struct timeval start,end;
float time;
double pi=0;
double sumH[NT]; //存储各个线程矩形的高之和
memset(sumH,0,sizeof(double)*NT);
double step = 1.0/(double)(N); //划分区间的宽度
// 设置线程数量,根据线程id交替计算矩形长度之和
omp_set_num_threads(NT);
gettimeofday(&start,NULL); //开始时间
#pragma omp parallel
{
double sum=0; //使用局部变量
double x=0; //x 坐标
int tid = omp_get_thread_num(); //线程id
int nts = omp_get_num_threads();//获取线程总数
for(int i=tid;i<N;i+=nts)
{
x = (i+0.5)*step; //取划分矩形的中点函数值
sum += 4.0/(1+x*x);
}
sumH[tid] = sum;
}
for(int i=0;i<NT;i++)
pi += sumH[i];
pi = step * pi;
gettimeofday(&end,NULL);
time = end.tv_sec-start.tv_sec+(end.tv_usec-start.tv_usec)/1e6;
printf("ths %d useSec %f pi %18.15f\n",NT,time,pi);
return;
}

3. 测试数据

3.1 耗时:单位为秒,每组参数测试四次取均值

线程数 1 2 4 8 16
访问共享一维数组元素 0.59455275 0.83000775 0.55785925 0.08166325 0.11506225
数组元素填充为二维,每个元素放在一个cacheline大小的一维数组中 0.61837 0.54942225 0.37650275 0.19830225 0.09455275
使用线程私有局部变量 0.4499215 0.22541475 0.113015 0.0571045 0.037793

3.2 加速比

线程数 1 2 4 8 16
访问共享一维数组元素 0.716321926 1.065775552 7.280542349 5.167226871
数组元素填充为二维,每个元素放在一个cacheline大小的一维数组中 1.125491368 1.642405002 3.118320644 6.539947278
使用线程私有局部变量 1.99597187 3.981077733 7.878914972 11.90488979

3.3 并行效率

线程数 1 2 4 8 16
访问共享一维数组元素 0.358160963 0.266443888 0.910067794 0.322951679
数组元素填充为二维,每个元素放在一个cacheline大小的一维数组中 0.562745684 0.410601251 0.389790081 0.408746705
使用线程私有局部变量 0.997985935 0.995269433 0.984864371 0.744055612

4. 数据分析

a. 随着线程数的增加除了原始代码效率会降低,优化代码效率均有明显提升,使用线程私有变量的效率最高。

b. 加速比并不会随着线程数的增加而线性增加。

c. 随着线程数量的增加,并行效率的变化是剧烈波动的。

高性能计算-openmp-多线程缓存一致性(9)的更多相关文章

  1. Java的多线程机制系列:(二)缓存一致性和CAS

    一.总线锁定和缓存一致性 这是两个操作系统层面的概念.随着多核时代的到来,并发操作已经成了很正常的现象,操作系统必须要有一些机制和原语,以保证某些基本操作的原子性.首先处理器需要保证读一个字节或写一个 ...

  2. redis,缓存雪崩,粗粒度锁,缓存一致性

    1, redis单线程为什么快 io多路复用技术 单线程避免多线程的频繁切换问题 memcache缺点 kv形式数据 没有持久化mongodb 海量数据的访问效率 mr的计算模型文档就是类似json的 ...

  3. 缓存一致性协议 mesi

    m : modified e : exlusive s : shared i : invalid 四种状态的转换略过,现在讨论为什么有了这个协议,i++在多线程上还不是安全的. 两个cpu A B同时 ...

  4. C和C++中的volatile、内存屏障和CPU缓存一致性协议MESI

    目录 1. 前言2 2. 结论2 3. volatile应用场景3 4. 内存屏障(Memory Barrier)4 5. setjmp和longjmp4 1) 结果1(非优化编译:g++ -g -o ...

  5. java并发编程(三)cpu cache & 缓存一致性

    一 cpu cache 1. cache的意义    为什么需要CPU cache?因为CPU的频率太快了,快到主存跟不上,这样在处理器时钟周期内,CPU常常需要等待主存,浪费资源.所以cache的出 ...

  6. 缓存一致性协议(MESI)

    在目前主流的计算机中,cpu执行计算的主要流程如图所示: 数据加载的流程如下: 1.将程序和数据从硬盘加载到内存中 2.将程序和数据从内存加载到缓存中(目前多三级缓存,数据加载顺序:L3->L2 ...

  7. Volatile如何保证线程可见性之总线锁、缓存一致性协议

    基础知识回顾 下图给出了假想机的基本设计.中央处理单元(CPU)是进行算术和逻辑操作的部件,包含了有限数量的存储位置--寄存器(register),一个高频时钟.一个控制单元和一个算术逻辑单元. 时钟 ...

  8. 【Java虚拟机4】Java内存模型(硬件层面的并发优化基础知识--缓存一致性问题)

    前言 今天学习了Java内存模型第一课的视频,讲了硬件层面的知识,还是和大学时一样,醍醐灌顶.老师讲得太好了. Java内存模型,感觉以前学得比较抽象.很繁杂,抽象. 这次试着系统一点跟着2个老师学习 ...

  9. 简述伪共享和缓存一致性MESI

    什么是伪共享 计算机系统中为了解决主内存与CPU运行速度的差距,在CPU与主内存之间添加了一级或者多级高速缓冲存储器(Cache),这个Cache一般是集成到CPU内部的,所以也叫 CPU Cache ...

  10. 缓存一致性性协议MESI笔记

    概述 今天的笔记只是讲解一下MESI的概念和使用场景的介绍,MESI(Modified Exclusive Shared Or Invalid)也称为伊利诺斯协议,是一种广泛使用的支持协会策略的缓存一 ...

随机推荐

  1. Json转实体类问题

    背景:使用一个实体类,将json及xml转成对应的实体类 Transformers.fromJson 将json映射成对应的实体类, 原本已经测试,传xml是可以的,传的有字段及list<E&g ...

  2. box-sizing属性的理解

    使用原因 盒模型布局中padding与border也是具有尺寸的,为避免其对页面布局产生影响,可使用box-sizing: border-box;属性设置盒模型,此时便可只用设置元素宽高即可. 属性详 ...

  3. [学习笔记] 2-SAT

    引入 有 \(n\) 个变量 \(x_1 \cdots x_n\),每个变量的取值范围为 \(\{0,1\}\),另有 \(m\) 个条件,每个条件都是对其中两个变量的取值限制,形如要么 \(x_i ...

  4. vue项目自动导入components

    开发项目中一般组件都放在 components 目录下,对于一些高频使用的组件我们需要在入口文件中设置为全局组件, 一个一个搞,很繁琐,这里通过webpack自动挂载components为全局组件. ...

  5. 坑人的opencv安装

    我想捡起来C++,最近在看opencv,于是我想着一起吧. 但是我低估了这个小麻烦的魅力,曾经安装opencv c++版本就头秃,如今依然头秃.说明我没长进啊-- 折腾了两天,终于装上了. 其中最麻烦 ...

  6. anaconda-navigator 卡在 loading applications

    其实上学期开学就已经这样了,我又不用,再者我上课对这些依赖不大,就没管. 这几天想彻底搞定吧.现状了opencv,最后搞了半天,还是通过安装相应版本的.whl文件搞定了,无法conda install ...

  7. 10 分钟快速搞懂 Lambda 表达式

    Lambda简介 Lambda表达式是Java8引入的一个重要特性,相当于一个语法糖. 语法糖(Syntactic sugar)是指在编程语言中引入的一种语法,它可以使代码更易读.更简洁,但并没有引入 ...

  8. JavaScript习题之简答题

    1.分别描述HTML.CSS.JS在页面组成中的作用.HTML是超文本标记语言,是用来描述网页的语言,定义网页的结构,内容可以包含文字.图片.视频等. CSS是层叠样式表,定义如何显示HTML元素,比 ...

  9. 【赵渝强】使用二进制包部署Kubernetes集群

    在一些企业的私有环境中可能无法连接外部的网络.如果要在这样的环境中部署Kubernetes集群,可以采集Kubernetes离线安装的方式进行部署.即:使用二进制安装包部署Kubernetes集群,采 ...

  10. Java实现随机抽奖的方法有哪些

    在Java中实现随机抽奖的方法,通常我们会使用java.util.Random类来生成随机数,然后基于这些随机数来选择中奖者.以下将给出几种常见的随机抽奖实现方式,包括从数组中抽取.从列表中抽取以及基 ...