在上一篇博客中,探讨了使用 rpicam-apps 通过 JSON 文件配置并运行目标检测示例程序。虽然这种方法可以实现有效的检测,但它限制了开发者直接在代码中利用检测结果的能力。因此,在本篇博客中,将深入探讨如何借助 HailoRT Python API 调用神经处理单元(NPU),以实现在 Python 程序中的目标检测功能。

Python 环境配置

在上一篇博客中已经安装了 hailo-all,这其中包含了 Hailo NPU 的所有必要组件。然而,根据硬件和操作系统需求,可能需要单独安装或更新驱动程序。对于非 Raspberry Pi 设备或当遇到驱动版本不兼容的问题时,此时可以登录 Hailo 的网站 https://hailo.ai/developer-zone/software-downloads,并选择适合系统的驱动程序进行下载与安装。

例如,如果正在使用基于 arm64 架构的 Ubuntu 操作系统,并且需要 4.19.0 版本的驱动,那么可以下载相应的 PCIe 驱动包和 HailoRT 包,并执行以下命令完成安装:

sudo apt purge -y hailo-all  # 卸载现有的整合包
sudo dpkg -i hailort-pcie-driver_4.19.0_all.deb # 安装新的驱动
sudo dpkg -i hailort_4.19.0_arm64.deb # 安装 HailoRT

为了能够在 Python 中调用 NPU,还需要安装 Python 相关库。同样地,在 Hailo 的官方网站中找到对应 Python 版本的 .whl 文件,并按照下面的步骤创建虚拟环境并安装必要的软件包:

conda create -n hailort python=3.10  # 创建虚拟环境
conda activate hailort # 激活虚拟环境
pip install hailort-4.19.0-cp310-cp310-linux_aarch64.whl # 安装 HailoRT Python 包

还需要安装 OpenCV 对图像进行处理。由于 OpenCV 无法读取 Raspberry Pi 的 CSI 摄像头,如果需要使用请额外安装 picamera2rpi-libcamera

pip install opencv-python
pip install picamera2 rpi-libcamera

实现 USB 摄像头的目标检测

为了让目标检测更加实用,需要将摄像头获取的实时视频流作为输入,并在每帧图像上应用深度学习模型来识别对象。无论是否使用 Hailo-8 进行目标检测,都需要遵循以下步骤来编写代码。

  1. 打开摄像头;
  2. 加载目标检测模型;
  3. 处理视频流,显示结果。

这里提供一个基本的代码框架,下面将逐步完成这个代码。

import cv2

# TODO: 加载模型

# 打开默认摄像头
cap = cv2.VideoCapture(0) while True:
# 读取帧
ret, frame = cap.read()
if not ret:
break # TODO: 进行推理 # 显示帧
cv2.imshow('Detections', frame) # 按下 'q' 键退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break # 释放摄像头并关闭窗口
cap.release()
cv2.destroyAllWindows()

首先来完成第一个 TODO 的内容 加载模型 。在代码的顶部引入 HailoRT 中必要的类。

import numpy as np
from hailo_platform import HEF, Device, VDevice, InputVStreamParams, OutputVStreamParams, FormatType, HailoStreamInterface, InferVStreams, ConfigureParams

在 Hailo NPU 上运行的是 .hef 的模型文件,Hailo 的 GitHub 仓库 https://github.com/hailo-ai/hailo_model_zoo 提供了大部分主流的预编译模型,可以直接下载使用。这里使用 YOLOv8s 作为测试。

# COCO 数据集的标签
class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
# 加载 YOLOv8s 模型
hef_path = 'yolov8s.hef'
hef = HEF(hef_path)

模型加载完成后,还需要对 Hailo 设备进行一些配置。

# 初始化 Hailo 设备
devices = Device.scan()
target = VDevice(device_ids=devices)
# 配置网络组
configure_params = ConfigureParams.create_from_hef(hef, interface=HailoStreamInterface.PCIe)
network_group = target.configure(hef, configure_params)[0]
network_group_params = network_group.create_params()
# 获取输入输出流信息
input_vstream_info = hef.get_input_vstream_infos()[0]
output_vstream_info = hef.get_output_vstream_infos()[0]
# 创建输入输出虚拟流参数
input_vstreams_params = InputVStreamParams.make_from_network_group(network_group, quantized=False, format_type=FormatType.FLOAT32)
output_vstreams_params = OutputVStreamParams.make_from_network_group(network_group, quantized=False, format_type=FormatType.FLOAT32)

到这里第一个 TODO 的内容已经完成,下面来完成第二个 TODO 的内容 进行推理 。在推理之前,需要对输入模型中的图像进行变换,调整为模型输入的大小。

# 对图像进行预处理
resized_frame = cv2.resize(frame, (input_vstream_info.shape[0], input_vstream_info.shape[1]))
input_data = {input_vstream_info.name: np.expand_dims(np.asarray(resized_frame), axis=0).astype(np.float32)}

图像调整完成后,使用 infer() 方法进行推理。tf_nms_format 参数控制结果的输出形式,默认为 False,输出 Hailo 格式的数据,一个 numpy.ndarray 列表,每个元素代表类的检测结果,其格式为 [number_of_detections,BBOX_PARAMS];值为 True 时输出 TensorFlow 格式的数据,numpy.ndarray 类型的值,其格式为 [class_count, BBOX_PARAMS, detections_count]

# 创建输入输出虚拟流并推理
with InferVStreams(network_group, input_vstreams_params, output_vstreams_params, tf_nms_format = True) as infer_pipeline:
with network_group.activate(network_group_params):
output_data = infer_pipeline.infer(input_data)

推理后需要对结果进行解析,不论是哪种类型的格式,BBOX_PARAMS 都是归一化后的值。因此需要计算原始图像和输入图像的比例,将结果逆归一化,然后再画出检测框。

colors = np.random.uniform(0, 255, size=(len(class_names), 3))

# 根据坐标画出检测框
def draw_bboxes(image, bboxes, confidences, class_ids, class_names, colors):
for i, bbox in enumerate(bboxes):
x1, y1, x2, y2 = bbox
label = f'{class_names[class_ids[i]]}: {confidences[i]:.2f}'
color = colors[class_ids[i]]
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # 图像缩放比例
scale_x = frame.shape[1] / input_vstream_info.shape[1]
scale_y = frame.shape[0] / input_vstream_info.shape[0] # 提取检测框坐标、类别等信息,并在原始帧上绘制
for key in output_data.keys():
num_classes, bbox_params, num_detections = output_data[key][0].shape boxes = []
confidences = []
class_ids = [] for class_id in range(num_classes):
for detection_id in range(num_detections):
bbox = output_data[key][0][class_id, :, detection_id]
if bbox[4] > 0.5:
x1, y1, x2, y2, confidence = bbox[:5] x1 = int(x1 * input_vstream_info.shape[0] * scale_x)
y1 = int(y1 * input_vstream_info.shape[1] * scale_y)
x2 = int(x2 * input_vstream_info.shape[0] * scale_x)
y2 = int(y2 * input_vstream_info.shape[1] * scale_y) print(f'{class_names[class_id]}: {[x1, y1, x2, y2]} {bbox[:5]}') boxes.append([x1, y1, x2, y2])
confidences.append(float(confidence))
class_ids.append(class_id) draw_bboxes(frame, boxes, confidences, class_ids, class_names, colors)

到此,第二个 TODO 的内容也已实现,完整的程序如下:

import cv2
import numpy as np
from hailo_platform import HEF, Device, VDevice, InputVStreamParams, OutputVStreamParams, FormatType, HailoStreamInterface, InferVStreams, ConfigureParams class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'] colors = np.random.uniform(0, 255, size=(len(class_names), 3)) # 根据坐标画出检测框
def draw_bboxes(image, bboxes, confidences, class_ids, class_names, colors):
for i, bbox in enumerate(bboxes):
x1, y1, x2, y2 = bbox
label = f'{class_names[class_ids[i]]}: {confidences[i]:.2f}'
color = colors[class_ids[i]]
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # 加载YOLOv8模型
hef_path = 'yolov8s.hef'
hef = HEF(hef_path)
# 初始化Hailo设备
devices = Device.scan()
target = VDevice(device_ids=devices)
# 配置网络组
configure_params = ConfigureParams.create_from_hef(hef, interface=HailoStreamInterface.PCIe)
network_group = target.configure(hef, configure_params)[0]
network_group_params = network_group.create_params()
# 获取输入输出流信息
input_vstream_info = hef.get_input_vstream_infos()[0]
output_vstream_info = hef.get_output_vstream_infos()[0]
# 创建输入输出虚拟流参数
input_vstreams_params = InputVStreamParams.make_from_network_group(network_group, quantized=False, format_type=FormatType.FLOAT32)
output_vstreams_params = OutputVStreamParams.make_from_network_group(network_group, quantized=False, format_type=FormatType.FLOAT32) # 使用摄像头0作为视频源
cap = cv2.VideoCapture(0) while True:
ret, frame = cap.read()
if not ret:
break # 对图像进行预处理
resized_frame = cv2.resize(frame, (input_vstream_info.shape[0], input_vstream_info.shape[1]))
input_data = {input_vstream_info.name: np.expand_dims(np.asarray(resized_frame), axis=0).astype(np.float32)}
# 创建输入输出虚拟流并推理
with InferVStreams(network_group, input_vstreams_params, output_vstreams_params, tf_nms_format = True) as infer_pipeline:
with network_group.activate(network_group_params):
output_data = infer_pipeline.infer(input_data) # 图像缩放比例
scale_x = frame.shape[1] / input_vstream_info.shape[1]
scale_y = frame.shape[0] / input_vstream_info.shape[0] # 提取边界框、类别等信息,并在原始帧上绘制
for key in output_data.keys():
num_classes, bbox_params, num_detections = output_data[key][0].shape boxes = []
confidences = []
class_ids = [] for class_id in range(num_classes):
for detection_id in range(num_detections):
bbox = output_data[key][0][class_id, :, detection_id]
if bbox[4] > 0.5:
x1, y1, x2, y2, confidence = bbox[:5] x1 = int(x1 * input_vstream_info.shape[0] * scale_x)
y1 = int(y1 * input_vstream_info.shape[1] * scale_y)
x2 = int(x2 * input_vstream_info.shape[0] * scale_x)
y2 = int(y2 * input_vstream_info.shape[1] * scale_y) print(f'{class_names[class_id]}: {[x1, y1, x2, y2]} {bbox[:5]}') boxes.append([x1, y1, x2, y2])
confidences.append(float(confidence))
class_ids.append(class_id) draw_bboxes(frame, boxes, confidences, class_ids, class_names, colors) cv2.imshow('Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break # 释放资源
cap.release()
cv2.destroyAllWindows()

程序效果如下:

Hailo 的 GitHub 仓库中也提供了其他类型的应用,更多用法请查看 https://github.com/hailo-ai/Hailo-Application-Code-Examples 以及官方文档。

参考

  1. Hailo Documentation:https://hailo.ai/developer-zone/documentation/
  2. Hailo Application Code Examples:https://github.com/hailo-ai/Hailo-Application-Code-Examples

张高兴的 Raspberry Pi AI 开发指南:(二)使用 Python 进行目标检测的更多相关文章

  1. [Lua游戏AI开发指南] 笔记零 - 框架搭建

    一.图书详情 <Lua游戏AI开发指南>,原作名: Learning Game AI Programming with Lua. 豆瓣:https://book.douban.com/su ...

  2. 树莓派(raspberry pi)系统开发

    [树莓派(raspberry pi)] 01.在linux环境下给树莓派安装系统及入门各种资料 [树莓派(raspberry pi)] 02.PI3安装openCV开发环境做图像识别(详细版) 出处: ...

  3. Spark Streaming和Kafka整合开发指南(二)

    在本博客的<Spark Streaming和Kafka整合开发指南(一)>文章中介绍了如何使用基于Receiver的方法使用Spark Streaming从Kafka中接收数据.本文将介绍 ...

  4. 利用raspberry pi搭建typecho笔记(二) sqlite和typecho部署

    sqlite概述 typecho可以支持MYSQL和Sqlite两种数据库,因为Sqlite更为轻量,并且不需要额外的进程,而是直接对数据库文件进行读取,所以配置相对于MySQL也更为简单,仅需指定数 ...

  5. 【转】Polymer API开发指南 (二)(翻译)

    原文转自:http://segmentfault.com/blog/windwhinny/1190000000596258 公开 property 当你公开一个 Polymer 元素的 propert ...

  6. Polymer API开发指南 (二)(翻译)

    公开 property 当你公开一个 Polymer 元素的 property 名字时,就等于把这个 property 设置为公开API了.公开 property 会有如下的特性: 支持声明数据双向绑 ...

  7. Python自动化运维开发实战 二、Python基本用法

    导语: Python编程博大精深,知识点众多,需要先整体上了解python的一些基本用法之后再去对每一个知识点细细研究,这样学习的速度会快很多.所以下面就先看一些python事先需要知道的基本知识. ...

  8. 2014年基于Raspberry Pi的5大项目

    2014年基于Raspberry Pi的5大项目   Raspberry Pi(即树莓派)是一款基于Linux系统(Debian.ArchLinux)的单板机计算机,它只有一张信用卡大小,可用于电子表 ...

  9. 树莓派(Raspberry Pi)上手小记

    引言 本日志中有不少软广告,博主并没有收他们任何好处,完全是给想入手的小伙伴们指条路而已.不喜勿看,不喜勿闻,不喜勿喷. 介绍 之前两三个月突然听说了这么个东西,也没有留意,某天突然在一个微信公众号上 ...

  10. 2019 年在 Raspberry Pi 「树莓派」上运行的 10 个操作系统推荐

    原文:2019 年在 Raspberry Pi 「树莓派」上运行的 10 个操作系统推荐 image Raspberry Pi** 是一款基于 ARM 的单板计算机,默认运行一款称为 Raspbian ...

随机推荐

  1. 5G网元功能与接口

    5G网元功能与接口 5G移动通信整体网络架构 5G网络功能之间的信息交互可以基于两种方式表示:其一为基于服务表示:其二为基于点对点表示.实时部署时,也可以采用两种方式相结合的表示方式. 并不是所有的接 ...

  2. CSP-J 2024游记

    CSP-J 2024游记 题目难度 总体来说,这次考试题目对于我这个初一牲难度不高.前面的选择题出现了少量难题(格蕾码). 选择题 选择题出现了一个搞人心态的BYD题目--格蕾码.这道题我蒙的, 阅读 ...

  3. Windows应急响应-Auto病毒

    目录 应急背景 分析样本 开启监控 感染病毒 查看监控 分析病毒行为 autorun.inf分析 2.异常连接 3.进程排查 4.启动项排查 查杀 1.先删掉autorun.inf文件 2.使用xue ...

  4. 从url地址获取主机名

    function getHost(url) { var host = "null"; if(typeof url == "undefined"|| null = ...

  5. vue 的常用指令以及作用 ·

    1. v-model 多用于表单元素实现双向数据绑定(同 angular 中的 ng-model) 2. v-for 格式: v-for="字段名 in(of) 数组 json" ...

  6. 小程序把html代码渲染到页面上 rich-text

    <rich-text nodes="<h1>html的代码显示再小程序使用rich-text组件</h1>"></rich-text> ...

  7. es6有哪些新特性?

    1. let 和 ocnst ,可以定义块级作用域 2. 新增了箭头函数,箭头函数简化了函数定义的定义 3.新增了promise解决回调地狱问题 ps:回调地狱是我们异步请求服务器数据时,通过then ...

  8. vue3实现多层级的动态表单增减

    .markdown-body { line-height: 1.75; font-weight: 400; font-size: 16px; overflow-x: hidden; color: rg ...

  9. 云原生爱好者周刊:长得最像苹果的 Linux 桌面

    云原生一周动态要闻 SUSE 发布 Harvester 0.2.0 IBM 收购容器服务提供商 BoxBoat Kubernetes 和云原生运营报告 2021 发布 适用于 Kubernetes 的 ...

  10. linux环境nginx配置记录

    nginx环境安装 1.联网下载 pcre压缩包 解压压缩文件使用命令 tar –xvf pcre-8.37.tar.gz ./configure 完成后,回到 pcre 目录下执行 make,最后执 ...