LLMOps MLOPS
https://www.redhat.com/en/topics/ai/llmops
https://www.redhat.com/en/topics/cloud-computing/what-is-kubeflow
https://www.kubeflow.org/docs/started/architecture/
https://github.com/kserve/kserve
Large Language Model Operations (LLMOps) are operational methods used to manage large language models. With LLMOps, the lifecycle of LLMs are managed and automated, from fine-tuning to maintenance, helping developers and teams deploy, monitor, and maintain LLMs.
LLMOps vs. MLOps
If LLMs are a subset of ML models, then LLMOps is a large language model equivalent to machine learning operations (MLOps). MLOps is a set of workflow practices aiming to streamline the process of deploying and maintaining ML models. MLOps seeks to establish a continuous evolution for integrating ML models into software development processes. Similarly, LLMOps seeks to continuously experiment, iterate, deploy and improve the LLM development and deployment lifecycle.
While LLMOps and MLOps have similarities, there are also differences. A few include:
Learning: Traditional ML models are usually created or trained from scratch, but LLMs start from a foundation model and are fine-tuned with data to improve task performance.
Tuning: For LLMs, fine-tuning improves performance and increases accuracy, making the model more knowledgeable about a specific subject. Prompt tuning enables LLMs to perform better on specific tasks. Hyperparameter tuning is also a difference. In traditional ML, tuning focuses on improving accuracy. With LLMs, tuning is important for accuracy as well as reducing cost and the amount of power required for training. Both model types benefit from the tuning process, but with different emphases. Lastly, it's important to mention retrieval-augmented generation (RAG), the process of using external knowledge to ensure accurate and specific facts are collected by the LLM to produce better responses.
Feedback: Reinforcement learning from human feedback (RLHF) is an improvement in training LLMs. Feedback from humans is critical to a LLM’s performance. LLMs use feedback to evaluate for accuracy, whereas traditional ML models use specific metrics for accuracy.
Performance metrics: ML models have precise performance metrics, but LLMs have a different set of metrics, like bilingual evaluation understudy (BLEU) and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) which require more complex evaluation.
Benefits of LLMOps
With LLMOps becoming the best way to monitor and enhance the performance, there are three primary benefits to discuss:
Efficiency: LLMOps allows teams to develop models faster, improve model quality, and quickly deploy. With a more streamlined approach to management, teams can collaborate better on a platform that promotes communication, development and deployment.
Scalability: LLMOps aids in scalability and management because more than 1 model can be managed and monitored for continuous integration and continuous delivery/deployment (CI/CD). LLMOps also provides a more responsive user experience through improved data communication and response.
Risk reduction: LLMOps promotes more transparency and establishes better compliance with organization and industry policies. LLMOps can improve security and privacy by protecting sensitive information and preventing exposure to risks.
LLMOps MLOPS的更多相关文章
- Tengine MLOps概述
Tengine MLOps概述 大幅提高产业应用从云向边缘迁移的效率 MLOps Cloud Native 聚焦于提升云端的运营过程效率 MLOps Edge Native 聚焦于解决边缘应用开发及异 ...
- CNCF CloudNative Landscape
cncf landscape CNCF Cloud Native Interactive Landscape 1. App Definition and Development 1. Database ...
- 云原生生态周报 Vol. 17 | Helm 3 发布首个 beta 版本
本周作者 | 墨封.衷源.元毅.有济.心水 业界要闻 1. Helm 3 首个 beta 版本 v3.0.0-beta.1 发布 该版本的重点是完成最后的修改和重构,以及移植其他 Helm 2 特性. ...
- .NET Conf 2019日程(北京时间)
一年一度的 .NET Conf马上就要开始了,我将日程简易的翻译了一下,并且时间全部转换为北京时间,以方便国内.NETer. 日程 第1天 (北京时间9月24日) .NET Conf 2019 基调 ...
- .NET Core 3.0即将发布!
期待已久的.NET Core 3.0即将发布! .NET Core 3.0在.NET Conf上发布.大约还有9个多小时后,.NET Conf开始启动. 为期3天的大概日程安排如下: 第1天-9月23 ...
- CNCF LandScape Summary
CNCF Cloud Native Interactive Landscape 1. App Definition and Development 1. Database Vitess:itess i ...
- 2021年的十五个DevOps趋势预测
DevOps已经走过了很长的一段路,毫无疑问,它将在今年继续闪耀.由于许多公司都在寻找围绕其数字化转型的最佳实践,因此了解领导者认为该行业的发展方向非常重要.从这个意义上说,下面的文章收集了DevOp ...
- NVIDIA DGX SUPERPOD 企业解决方案
NVIDIA DGX SUPERPOD 企业解决方案 实现大规模 AI 创新的捷径 NVIDIA DGX SuperPOD 企业解决方案是业界首个支持任何组织大规模实施 AI 的基础架构解决方案.这一 ...
- CA周记 - Build 2022 上开发者最应关注的七大方向主要技术更新
一年一度的 Microsoft Build 终于来了,带来了非常非常多的新技术和功能更新.不知道各位小伙伴有没有和我一样熬夜看了开幕式和五个核心主题的全过程呢?接下来我和大家来谈一下作为开发者最应关注 ...
- 在生产中部署ML前需要了解的事
在生产中部署ML前需要了解的事 译自:What You Should Know before Deploying ML in Production MLOps的必要性 MLOps之所以重要,有几个原因 ...
随机推荐
- 在OERV也可以玩MC(上)
最近发现一个比较有意思的事情,原来HMCL这个项目也移植到RISC-V上了,之前一直没有发现,因此在OERV(openEuler RISC-V的简称)玩MC也是可以的了.首先,HMCL是一款功能丰富的 ...
- HBase-4MapReduce
集成分析 HBase表中的数据最终都是存储在HDFS上,HBase天生的支持MR的操作,我们可以通过MR直接处理HBase表中的数据,并且MR可以将处理后的结果直接存储到HBase表中. 参考地址:h ...
- 基于MPC的快速transformer安全推理框架
论文:一种基于安全多方计算的快速Transformer安全推理方案-刘伟欣 摘要 数据隐私泄露问题:当前Transformer推理应用中用户的数据会被泄露给模型提供方 安全推理方法:基于MPC实现Tr ...
- ZenPhoto pg walkthrough Intermediate
nmap nmap -p- -A -sS 192.168.128.41 Starting Nmap 7.94SVN ( https://nmap.org ) at 2025-01-13 07:17 U ...
- 在阿里云ECS上一键部署DeepSeek-R1
DeepSeek-R1 是一款开源模型,也提供了 API(接口)调用方式.据 DeepSeek介绍,DeepSeek-R1 后训练阶段大规模使用了强化学习技术,在只有极少标注数据的情况下提升了模型推理 ...
- Linux命令格式详解
Linux命令格式详解 在Linux系统中,命令行界面是用户与系统交互的重要方式之一.通过命令行,用户可以执行各种任务,从简单的文件操作到复杂的系统配置.为了更有效地使用命令行,理解Linux命令的基 ...
- 深入剖析实体-关系模型(ER 图):理论与实践全解析
title: 深入剖析实体-关系模型(ER 图):理论与实践全解析 date: 2025/2/8 updated: 2025/2/8 author: cmdragon excerpt: 实体-关系模型 ...
- Spring Boot项目设置跨域
一.跨域设置 新建一个配置类 import java.io.IOException; import javax.servlet.Filter; import javax.servlet.FilterC ...
- MySQL - [10] 时间处理函数
题记部分 (1)获取当前日期时间:select current_date; (2)获取当前时间戳:select current_timestamp; (3)返回日期中的年/季度/月/日/时/分/秒 s ...
- 为什么 退出登录 或 修改密码 无法使 token 失效
前文说过 token 由 3 个部分组成:分别是 token metadata,payload,signature, 其中 signature 部分是对 payload 的加密,而 payload 当 ...