LLMOps MLOPS
https://www.redhat.com/en/topics/ai/llmops
https://www.redhat.com/en/topics/cloud-computing/what-is-kubeflow
https://www.kubeflow.org/docs/started/architecture/
https://github.com/kserve/kserve
Large Language Model Operations (LLMOps) are operational methods used to manage large language models. With LLMOps, the lifecycle of LLMs are managed and automated, from fine-tuning to maintenance, helping developers and teams deploy, monitor, and maintain LLMs.
LLMOps vs. MLOps
If LLMs are a subset of ML models, then LLMOps is a large language model equivalent to machine learning operations (MLOps). MLOps is a set of workflow practices aiming to streamline the process of deploying and maintaining ML models. MLOps seeks to establish a continuous evolution for integrating ML models into software development processes. Similarly, LLMOps seeks to continuously experiment, iterate, deploy and improve the LLM development and deployment lifecycle.
While LLMOps and MLOps have similarities, there are also differences. A few include:
Learning: Traditional ML models are usually created or trained from scratch, but LLMs start from a foundation model and are fine-tuned with data to improve task performance.
Tuning: For LLMs, fine-tuning improves performance and increases accuracy, making the model more knowledgeable about a specific subject. Prompt tuning enables LLMs to perform better on specific tasks. Hyperparameter tuning is also a difference. In traditional ML, tuning focuses on improving accuracy. With LLMs, tuning is important for accuracy as well as reducing cost and the amount of power required for training. Both model types benefit from the tuning process, but with different emphases. Lastly, it's important to mention retrieval-augmented generation (RAG), the process of using external knowledge to ensure accurate and specific facts are collected by the LLM to produce better responses.
Feedback: Reinforcement learning from human feedback (RLHF) is an improvement in training LLMs. Feedback from humans is critical to a LLM’s performance. LLMs use feedback to evaluate for accuracy, whereas traditional ML models use specific metrics for accuracy.
Performance metrics: ML models have precise performance metrics, but LLMs have a different set of metrics, like bilingual evaluation understudy (BLEU) and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) which require more complex evaluation.
Benefits of LLMOps
With LLMOps becoming the best way to monitor and enhance the performance, there are three primary benefits to discuss:
Efficiency: LLMOps allows teams to develop models faster, improve model quality, and quickly deploy. With a more streamlined approach to management, teams can collaborate better on a platform that promotes communication, development and deployment.
Scalability: LLMOps aids in scalability and management because more than 1 model can be managed and monitored for continuous integration and continuous delivery/deployment (CI/CD). LLMOps also provides a more responsive user experience through improved data communication and response.
Risk reduction: LLMOps promotes more transparency and establishes better compliance with organization and industry policies. LLMOps can improve security and privacy by protecting sensitive information and preventing exposure to risks.
LLMOps MLOPS的更多相关文章
- Tengine MLOps概述
Tengine MLOps概述 大幅提高产业应用从云向边缘迁移的效率 MLOps Cloud Native 聚焦于提升云端的运营过程效率 MLOps Edge Native 聚焦于解决边缘应用开发及异 ...
- CNCF CloudNative Landscape
cncf landscape CNCF Cloud Native Interactive Landscape 1. App Definition and Development 1. Database ...
- 云原生生态周报 Vol. 17 | Helm 3 发布首个 beta 版本
本周作者 | 墨封.衷源.元毅.有济.心水 业界要闻 1. Helm 3 首个 beta 版本 v3.0.0-beta.1 发布 该版本的重点是完成最后的修改和重构,以及移植其他 Helm 2 特性. ...
- .NET Conf 2019日程(北京时间)
一年一度的 .NET Conf马上就要开始了,我将日程简易的翻译了一下,并且时间全部转换为北京时间,以方便国内.NETer. 日程 第1天 (北京时间9月24日) .NET Conf 2019 基调 ...
- .NET Core 3.0即将发布!
期待已久的.NET Core 3.0即将发布! .NET Core 3.0在.NET Conf上发布.大约还有9个多小时后,.NET Conf开始启动. 为期3天的大概日程安排如下: 第1天-9月23 ...
- CNCF LandScape Summary
CNCF Cloud Native Interactive Landscape 1. App Definition and Development 1. Database Vitess:itess i ...
- 2021年的十五个DevOps趋势预测
DevOps已经走过了很长的一段路,毫无疑问,它将在今年继续闪耀.由于许多公司都在寻找围绕其数字化转型的最佳实践,因此了解领导者认为该行业的发展方向非常重要.从这个意义上说,下面的文章收集了DevOp ...
- NVIDIA DGX SUPERPOD 企业解决方案
NVIDIA DGX SUPERPOD 企业解决方案 实现大规模 AI 创新的捷径 NVIDIA DGX SuperPOD 企业解决方案是业界首个支持任何组织大规模实施 AI 的基础架构解决方案.这一 ...
- CA周记 - Build 2022 上开发者最应关注的七大方向主要技术更新
一年一度的 Microsoft Build 终于来了,带来了非常非常多的新技术和功能更新.不知道各位小伙伴有没有和我一样熬夜看了开幕式和五个核心主题的全过程呢?接下来我和大家来谈一下作为开发者最应关注 ...
- 在生产中部署ML前需要了解的事
在生产中部署ML前需要了解的事 译自:What You Should Know before Deploying ML in Production MLOps的必要性 MLOps之所以重要,有几个原因 ...
随机推荐
- Apollo架构设计
Apollo架构设计 Apollo有一点很好,就是它是由国内携程团队开发,而且文档写的很全,代码也完全开源.如果去了解它也可以直接去看它的官方文档. 一.配置中心概念 1.背景 在实际开发中都会与配置 ...
- 云安全CIA:关键信息保证的三大支柱
本文分享自天翼云开发者社区<云安全CIA:关键信息保证的三大支柱>,作者:每日知识小分享 随着云计算的迅速普及,云安全问题越来越受到关注.云安全涉及的范围广泛,涵盖了云端数据中心的物理安全 ...
- Whois 收集
Whois 收集 Whois是什么 Whois(读作"Who is")是一个标准的互联网协议,主要用于查询域名的注册信息,包括域名所有人.注册商.注册时间.过期时间等详细信息.简单 ...
- 本地部署 DeepSeek Janus Pro 文生图大模型
Hello, 大家新年好. 在这个春节期间最火的显然是 DeepSeek 了.据不负责统计朋友圈每天给我推送关于 DeepSeek 的文章超过20篇.打开知乎跟B站也全是 DeepSeek 相关的内容 ...
- linux创建快捷方式
第一方法设置软连接 ln -s test.log test2.log 第二方法 第一步 新建 /usr/share/applications 目录下的某个快捷方式文件 如 touch /usr ...
- Luogu P11233 CSP-S2024 染色 题解 [ 蓝 ] [ 线性 dp ] [ 前缀和优化 ]
染色:傻逼题. 赛时没切染色的都是唐氏!都是唐氏!都是唐氏!都是唐氏!都是唐氏!都是唐氏!都是唐氏! 包括我. 真的太傻逼了这题. 我今晚心血来潮一打这题,随便优化一下,就 AC 了. 怎么做到这么蠢 ...
- Docker 持续集成部署+ELK日志相关等 完美实践
docker(ubuntu) 卸载docker # 卸载(如有) for pkg in docker.io docker-doc docker-compose docker-compose-v2 po ...
- Mybatis之Select Count(*)的获取 返回int 的值
本文将介绍,SSM中mybatis 框架如何获取Select Count(*)返回int 的值.1. Service 代码: public boolean queryByunitclass(Strin ...
- CART回归树基本原理(具体例子)
id3不能直接处理连续性的特征,需要将连续性的转化成离散的,但是会破坏连续性特征的内在结构. 一.概念 CART全称叫Classification and Regression Tree.首先要强调的 ...
- SpringBoot - [09] Restful风格接口方法&参数
GetMapping.PostMapping.DeleteMapping.PutMapping是SpringBoot中常用的HTTP请求映射注解,它们分别对应HTTP协议中的GET.POST.DELE ...