LLMOps MLOPS
https://www.redhat.com/en/topics/ai/llmops
https://www.redhat.com/en/topics/cloud-computing/what-is-kubeflow
https://www.kubeflow.org/docs/started/architecture/
https://github.com/kserve/kserve
Large Language Model Operations (LLMOps) are operational methods used to manage large language models. With LLMOps, the lifecycle of LLMs are managed and automated, from fine-tuning to maintenance, helping developers and teams deploy, monitor, and maintain LLMs.
LLMOps vs. MLOps
If LLMs are a subset of ML models, then LLMOps is a large language model equivalent to machine learning operations (MLOps). MLOps is a set of workflow practices aiming to streamline the process of deploying and maintaining ML models. MLOps seeks to establish a continuous evolution for integrating ML models into software development processes. Similarly, LLMOps seeks to continuously experiment, iterate, deploy and improve the LLM development and deployment lifecycle.
While LLMOps and MLOps have similarities, there are also differences. A few include:
Learning: Traditional ML models are usually created or trained from scratch, but LLMs start from a foundation model and are fine-tuned with data to improve task performance.
Tuning: For LLMs, fine-tuning improves performance and increases accuracy, making the model more knowledgeable about a specific subject. Prompt tuning enables LLMs to perform better on specific tasks. Hyperparameter tuning is also a difference. In traditional ML, tuning focuses on improving accuracy. With LLMs, tuning is important for accuracy as well as reducing cost and the amount of power required for training. Both model types benefit from the tuning process, but with different emphases. Lastly, it's important to mention retrieval-augmented generation (RAG), the process of using external knowledge to ensure accurate and specific facts are collected by the LLM to produce better responses.
Feedback: Reinforcement learning from human feedback (RLHF) is an improvement in training LLMs. Feedback from humans is critical to a LLM’s performance. LLMs use feedback to evaluate for accuracy, whereas traditional ML models use specific metrics for accuracy.
Performance metrics: ML models have precise performance metrics, but LLMs have a different set of metrics, like bilingual evaluation understudy (BLEU) and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) which require more complex evaluation.
Benefits of LLMOps
With LLMOps becoming the best way to monitor and enhance the performance, there are three primary benefits to discuss:
Efficiency: LLMOps allows teams to develop models faster, improve model quality, and quickly deploy. With a more streamlined approach to management, teams can collaborate better on a platform that promotes communication, development and deployment.
Scalability: LLMOps aids in scalability and management because more than 1 model can be managed and monitored for continuous integration and continuous delivery/deployment (CI/CD). LLMOps also provides a more responsive user experience through improved data communication and response.
Risk reduction: LLMOps promotes more transparency and establishes better compliance with organization and industry policies. LLMOps can improve security and privacy by protecting sensitive information and preventing exposure to risks.
LLMOps MLOPS的更多相关文章
- Tengine MLOps概述
Tengine MLOps概述 大幅提高产业应用从云向边缘迁移的效率 MLOps Cloud Native 聚焦于提升云端的运营过程效率 MLOps Edge Native 聚焦于解决边缘应用开发及异 ...
- CNCF CloudNative Landscape
cncf landscape CNCF Cloud Native Interactive Landscape 1. App Definition and Development 1. Database ...
- 云原生生态周报 Vol. 17 | Helm 3 发布首个 beta 版本
本周作者 | 墨封.衷源.元毅.有济.心水 业界要闻 1. Helm 3 首个 beta 版本 v3.0.0-beta.1 发布 该版本的重点是完成最后的修改和重构,以及移植其他 Helm 2 特性. ...
- .NET Conf 2019日程(北京时间)
一年一度的 .NET Conf马上就要开始了,我将日程简易的翻译了一下,并且时间全部转换为北京时间,以方便国内.NETer. 日程 第1天 (北京时间9月24日) .NET Conf 2019 基调 ...
- .NET Core 3.0即将发布!
期待已久的.NET Core 3.0即将发布! .NET Core 3.0在.NET Conf上发布.大约还有9个多小时后,.NET Conf开始启动. 为期3天的大概日程安排如下: 第1天-9月23 ...
- CNCF LandScape Summary
CNCF Cloud Native Interactive Landscape 1. App Definition and Development 1. Database Vitess:itess i ...
- 2021年的十五个DevOps趋势预测
DevOps已经走过了很长的一段路,毫无疑问,它将在今年继续闪耀.由于许多公司都在寻找围绕其数字化转型的最佳实践,因此了解领导者认为该行业的发展方向非常重要.从这个意义上说,下面的文章收集了DevOp ...
- NVIDIA DGX SUPERPOD 企业解决方案
NVIDIA DGX SUPERPOD 企业解决方案 实现大规模 AI 创新的捷径 NVIDIA DGX SuperPOD 企业解决方案是业界首个支持任何组织大规模实施 AI 的基础架构解决方案.这一 ...
- CA周记 - Build 2022 上开发者最应关注的七大方向主要技术更新
一年一度的 Microsoft Build 终于来了,带来了非常非常多的新技术和功能更新.不知道各位小伙伴有没有和我一样熬夜看了开幕式和五个核心主题的全过程呢?接下来我和大家来谈一下作为开发者最应关注 ...
- 在生产中部署ML前需要了解的事
在生产中部署ML前需要了解的事 译自:What You Should Know before Deploying ML in Production MLOps的必要性 MLOps之所以重要,有几个原因 ...
随机推荐
- Spring Cloud Alibaba实战,从微服务架构到基本服务配置
https://blog.csdn.net/itcast_cn/article/details/124558887 Spring Cloud Alibaba 实战 1目标理解什么是微服务架构理解什么是 ...
- AQS源码深度剖析,大厂面试必看!
AQS(AbstractQueuedSynchronizer)是Java众多锁以及并发工具的基础类,底层采用乐观锁,大量采用CAS操作保证其原子性,并且在并发冲突时,采用自旋方法重试.实现了轻量高效的 ...
- python包学习:-了解
本节先做一些了解. numpy 参考:NumPy使用 NumPy 教程 NumPy是Python中科学计算的基础包.它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于 ...
- NTRU
介绍 NTRU(Number Theory Research Unit),NTRU是一个带有专利保护的开源公开密钥加密系统,使用基于格的加密算法来加密数据.它包括两部分算法:NTRUEncrypt用来 ...
- Centos 7 单用户模式修改密码/配置
1.启动系统,启动项界面显示时,按"↑↓"键停留在此界面,按下"e"键进入编辑模式 2.利用"↑↓"键找到"linux16&quo ...
- [记录点滴]Spring Boot Admin源码分析笔记
[记录点滴]Spring Boot Admin源码分析笔记 0x00 摘要 本文是过去使用Spring Boot Admin时候分析源码的笔记.虽然比较简单,但是也可以看出Spring Boot Ad ...
- 初探ASP.NET Core 3.x (2) - ASP.NET Core与ASP.NET前世今生
本文地址:https://www.cnblogs.com/oberon-zjt0806/p/12210662.html 注意 本节是历史课,且绝大多数内容来自于百科或者其他的什么资料来源,如果不感兴趣 ...
- 创建Linux iscsi target存储
配置targetcli 创建存储对象 创建块存储对象 cd /backstores/block \ create block1 dev=/dev/ ...
- [BZOJ3600] 没有人的算术 题解
妙不可言!妙绝人寰! 单点修,区间查,包是线段树的.考虑如何比较两节点大小. 考虑二叉搜索树,我们只要再给每个节点附一个权值,就可以比较了! 注意力相当惊人的注意到,假如给每个点一个区间 \([l_x ...
- AI 艺术工具通讯
创刊号 AI 领域的发展速度令人惊叹,回想一年前我们还在为生成正确手指数量的人像而苦苦挣扎的场景,恍如隔世 . 过去两年对开源模型和艺术创作工具而言具有里程碑意义.创意表达的 AI 工具从未像现在这般 ...