LLMOps MLOPS
https://www.redhat.com/en/topics/ai/llmops
https://www.redhat.com/en/topics/cloud-computing/what-is-kubeflow
https://www.kubeflow.org/docs/started/architecture/
https://github.com/kserve/kserve
Large Language Model Operations (LLMOps) are operational methods used to manage large language models. With LLMOps, the lifecycle of LLMs are managed and automated, from fine-tuning to maintenance, helping developers and teams deploy, monitor, and maintain LLMs.
LLMOps vs. MLOps
If LLMs are a subset of ML models, then LLMOps is a large language model equivalent to machine learning operations (MLOps). MLOps is a set of workflow practices aiming to streamline the process of deploying and maintaining ML models. MLOps seeks to establish a continuous evolution for integrating ML models into software development processes. Similarly, LLMOps seeks to continuously experiment, iterate, deploy and improve the LLM development and deployment lifecycle.
While LLMOps and MLOps have similarities, there are also differences. A few include:
Learning: Traditional ML models are usually created or trained from scratch, but LLMs start from a foundation model and are fine-tuned with data to improve task performance.
Tuning: For LLMs, fine-tuning improves performance and increases accuracy, making the model more knowledgeable about a specific subject. Prompt tuning enables LLMs to perform better on specific tasks. Hyperparameter tuning is also a difference. In traditional ML, tuning focuses on improving accuracy. With LLMs, tuning is important for accuracy as well as reducing cost and the amount of power required for training. Both model types benefit from the tuning process, but with different emphases. Lastly, it's important to mention retrieval-augmented generation (RAG), the process of using external knowledge to ensure accurate and specific facts are collected by the LLM to produce better responses.
Feedback: Reinforcement learning from human feedback (RLHF) is an improvement in training LLMs. Feedback from humans is critical to a LLM’s performance. LLMs use feedback to evaluate for accuracy, whereas traditional ML models use specific metrics for accuracy.
Performance metrics: ML models have precise performance metrics, but LLMs have a different set of metrics, like bilingual evaluation understudy (BLEU) and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) which require more complex evaluation.
Benefits of LLMOps
With LLMOps becoming the best way to monitor and enhance the performance, there are three primary benefits to discuss:
Efficiency: LLMOps allows teams to develop models faster, improve model quality, and quickly deploy. With a more streamlined approach to management, teams can collaborate better on a platform that promotes communication, development and deployment.
Scalability: LLMOps aids in scalability and management because more than 1 model can be managed and monitored for continuous integration and continuous delivery/deployment (CI/CD). LLMOps also provides a more responsive user experience through improved data communication and response.
Risk reduction: LLMOps promotes more transparency and establishes better compliance with organization and industry policies. LLMOps can improve security and privacy by protecting sensitive information and preventing exposure to risks.
LLMOps MLOPS的更多相关文章
- Tengine MLOps概述
Tengine MLOps概述 大幅提高产业应用从云向边缘迁移的效率 MLOps Cloud Native 聚焦于提升云端的运营过程效率 MLOps Edge Native 聚焦于解决边缘应用开发及异 ...
- CNCF CloudNative Landscape
cncf landscape CNCF Cloud Native Interactive Landscape 1. App Definition and Development 1. Database ...
- 云原生生态周报 Vol. 17 | Helm 3 发布首个 beta 版本
本周作者 | 墨封.衷源.元毅.有济.心水 业界要闻 1. Helm 3 首个 beta 版本 v3.0.0-beta.1 发布 该版本的重点是完成最后的修改和重构,以及移植其他 Helm 2 特性. ...
- .NET Conf 2019日程(北京时间)
一年一度的 .NET Conf马上就要开始了,我将日程简易的翻译了一下,并且时间全部转换为北京时间,以方便国内.NETer. 日程 第1天 (北京时间9月24日) .NET Conf 2019 基调 ...
- .NET Core 3.0即将发布!
期待已久的.NET Core 3.0即将发布! .NET Core 3.0在.NET Conf上发布.大约还有9个多小时后,.NET Conf开始启动. 为期3天的大概日程安排如下: 第1天-9月23 ...
- CNCF LandScape Summary
CNCF Cloud Native Interactive Landscape 1. App Definition and Development 1. Database Vitess:itess i ...
- 2021年的十五个DevOps趋势预测
DevOps已经走过了很长的一段路,毫无疑问,它将在今年继续闪耀.由于许多公司都在寻找围绕其数字化转型的最佳实践,因此了解领导者认为该行业的发展方向非常重要.从这个意义上说,下面的文章收集了DevOp ...
- NVIDIA DGX SUPERPOD 企业解决方案
NVIDIA DGX SUPERPOD 企业解决方案 实现大规模 AI 创新的捷径 NVIDIA DGX SuperPOD 企业解决方案是业界首个支持任何组织大规模实施 AI 的基础架构解决方案.这一 ...
- CA周记 - Build 2022 上开发者最应关注的七大方向主要技术更新
一年一度的 Microsoft Build 终于来了,带来了非常非常多的新技术和功能更新.不知道各位小伙伴有没有和我一样熬夜看了开幕式和五个核心主题的全过程呢?接下来我和大家来谈一下作为开发者最应关注 ...
- 在生产中部署ML前需要了解的事
在生产中部署ML前需要了解的事 译自:What You Should Know before Deploying ML in Production MLOps的必要性 MLOps之所以重要,有几个原因 ...
随机推荐
- 前端(四)-jQuery
1.jQuery的基本用法 1.1 jQuery引入 <script src="js/jquery-3.4.1.min.js" type="text/javascr ...
- 项目PMP之一项目管理介绍
一.项目定义: 概要:为创造独特的产品.服务或成果而进行的临时性工作 组织创造价值和效益.项目驱动变更创造商业价值的主要方式 特性/要素: 独特的产品.服务或成果,即一个或多个可交付成果(范围.进度( ...
- c代码部分封装为lib
需求:将一个C工程中的核心代码封装为静态文件:lib. 环境 工具:VC6.0++ 语言:c 以封装一个DES工程为例 封装 (1)新建一个静态工程 (2)新建c文件和h文件 (3)挑选封装内容 在原 ...
- linux:计划任务
at 计划执行一次性任务 at + time 表示方法: atq -c:查看目前等待执行的任务 atrm 任务编号 :删除at任务 [root账户才能删除,其他用户只能查询] crontab ...
- 天翼云CDR基本概念
本文分享自天翼云开发者社区<天翼云CDR基本概念>,作者:f****n 产品定义 云容灾CT-CDR(Cloud Disaster Recovery)为云主机提供跨可用区的容灾保护能力,R ...
- 一文详解 Sa-Token 中的 SaSession 对象
Sa-Token 是一个轻量级 java 权限认证框架,主要解决登录认证.权限认证.单点登录.OAuth2.微服务网关鉴权 等一系列权限相关问题. Gitee 开源地址:https://gitee.c ...
- [阿里DIN] 模型保存,加载和使用
[阿里DIN] 模型保存,加载和使用 0x00 摘要 Deep Interest Network(DIN)是阿里妈妈精准定向检索及基础算法团队在2017年6月提出的.其针对电子商务领域(e-comme ...
- Luogu P11233 CSP-S2024 染色 题解 [ 蓝 ] [ 线性 dp ] [ 前缀和优化 ]
染色:傻逼题. 赛时没切染色的都是唐氏!都是唐氏!都是唐氏!都是唐氏!都是唐氏!都是唐氏!都是唐氏! 包括我. 真的太傻逼了这题. 我今晚心血来潮一打这题,随便优化一下,就 AC 了. 怎么做到这么蠢 ...
- 借用【.bat 批处理】实现同时播放多个视频 · 以PotPlayer播放器为例
突然有这样的需求:同时打开一个文件夹下的多个视频播放任务.如何来实现呢? 理所当然的是想到Potplayer本身可以开多个进程,也就是多开窗口播放,但是经过实验,发现在资源管理器中选取多个视频源并不能 ...
- 【由技及道】API契约的量子纠缠术:响应封装的十一维通信协议【人工智障AI2077的开发日志012】
摘要:在API通信的量子混沌中,30+种返回格式如同平行宇宙的物理定律相互碰撞.本文构建的十一维通信协议,通过时空锚点(ApiResult).量子过滤器(ResponseWrapper)和湮灭防护罩( ...