Ignatius's puzzle

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9859    Accepted Submission(s): 6898

Problem Description
Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if
no exists that a,then print "no".

Input
The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
 
Output
The output contains a string "no",if you can't find a,or you should output a line contains the a.More details in the Sample Output.
 
Sample Input
11
100
9999
 
Sample Output
22
no
43
 
 

若a/b=x...0  称a能被b整除,b能整除a,即b|a,读作“b整除a”或“a能被b整除”。a叫做b的倍数,b叫做a的约数(或因数)。

a%b==0

摘自discuss

题目大意:

方程f(x)=5*x^13+13*x^5+k*a*x;输入任意一个数k,是否存在一个数a,对任意x都能使得f(x)能被65整除。

现假设存在这个数a ,因为对于任意x方程都成立

所以,当x=1时f(x)=18+ka

又因为f(x)能被65整出,故设n为整数

可得,f(x)=n*65;

即:18+ka=n*65; n为整数

则问题转化为,

对于给定范围的a只需要验证,

是否存在一个a使得(18+k*a)%65==0

所以容易解得

注意,这里有童鞋不理解为毛a只需到65即可

因为,当a==66时

也就相当于已经找了一个周期了,所以再找下去也找不到适当的a了
(18+k*a)%65=(18%65+k*a%65)%65;
当a=66时k*66%65==k%65(即a=1时)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
using namespace std;
#define MA 10010
int main()
{
int n,i,k;
while(~scanf("%d",&k))
{
for(i=;i<=;i++)
{
if((+i*k)%==)
{
printf("%d\n",i);
break;
}
}
if(i>=)
printf("no\n");
} return ;
}
 

HDU1098---数学的更多相关文章

  1. 数学: HDU1098 Ignatius's puzzle

    Ignatius's puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. 数学思想:为何我们把 x²读作x平方

    要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的 ...

  3. 速算1/Sqrt(x)背后的数学原理

    概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...

  4. MarkDown+LaTex 数学内容编辑样例收集

    $\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...

  5. 深度学习笔记——PCA原理与数学推倒详解

    PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多, ...

  6. Sql Server函数全解<二>数学函数

    阅读目录 1.绝对值函数ABS(x)和返回圆周率的函数PI() 2.平方根函数SQRT(x) 3.获取随机函数的函数RAND()和RAND(x) 4.四舍五入函数ROUND(x,y) 5.符号函数SI ...

  7. *HDU 2451 数学

    Simple Addition Expression Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  8. 如何解决Maple的应用在数学中

    对任意数学和技术学科的研究员.教师和学生而言,Maple是一个必备的工具.通过Maple,教师将复杂数学问题注入生命,学生的精力集中在概念理解上而不是如何使用工具上,研究员可以开发更复杂的算法或模型. ...

  9. 如何让Maple中的数学引擎进入你的桌面应用程序和网站

    MapleNET数学服务套件将Maple 2015强大的数学引擎引入您的应用程序和网站.使用MapleNET,您可以添加数学计算和可视化功能到网页和桌面程序中,通过互联网/局域网分享“活”的Maple ...

  10. 【原创】开源Math.NET基础数学类库使用(07)常用的数学物理常数

                   本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 1.前 ...

随机推荐

  1. 开源的CAS实现SSO

    https://www.ibm.com/developerworks/cn/opensource/os-cn-cas/index.html ISC是基于CAS定制的,使用的高级的代理模式. https ...

  2. php实现常驻进程 多进程监控

    php都是通过crontabd定时脚本处理队列的,面试被问到php如何常驻进程进行处理队列,想了半天这样不知道是否是一种方式 <?php function logs(){ file_put_co ...

  3. [转帖]Windows7 结束更新 以及后期更新花费。

    你不应该为Windows 7更新付费的三个原因 https://www.linuxidc.com/Linux/2019-02/156777.htm 对Windows 7的支持将在2020年1月结束,这 ...

  4. Bootstrap辅助类

    前面的话 Bootstrap提供了一组工具类,用于辅助项目的开发.本文将详细介绍Bootstrap辅助类 文本色 通过颜色来展示意图,Bootstrap 提供了一组工具类.这些类可以应用于链接,并且在 ...

  5. SESSION和cookie的使用和区别

    PHP中SESSION和cookie的使用和区别 cookie 是一种在远程浏览器端储存数据并以此来跟踪和识别用户的机制. PHP在http协议的头信息里发送cookie, 因此 setcookie( ...

  6. 部署AWStats分析系统

    介绍 AWStats是使用Prel语言开发的一款开源日志分析系统,它不仅可以用来分析Apache网站服务器的访问日志,也可以用来分析Samba.Vsftpd.IIS等服务的日志信息. AWStats软 ...

  7. BZOJ3996[TJOI2015]线性代数——最小割

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...

  8. BZOJ1827[USACO 2010 Mar Gold 1.Great Cow Gathering]——树形DP

    题目描述 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,000) 个农场 ...

  9. 【BZOJ4671】异或图(斯特林反演)

    [BZOJ4671]异或图(斯特林反演) 题面 BZOJ Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出 ...

  10. 自学Linux Shell9.1-安装软件程序

    点击返回 自学Linux命令行与Shell脚本之路 9.1-linux安装软件程序 PMS利用一个数据库来记录各种相关内容: Linux系统安装了什么软件包 每个包安装什么文件 每个已安装软件包的版本 ...